* % x EUROPEAN UNION =<
* ol European Structural and Investment Funds
* * Operational Programme Research,

MINISTRY OF EDUCATION,
Yo ORTS

OUTH AND SPOR

Development and Education

C++ Programming |

Petr Gajdos

VSB — Technical University of Ostrava

petr.gajdos@vsb.cz

O

Important Notes |||||

This document is a compilation of several resources that are published under various licenses.
Therefore, only links to other resources are provided with correspondings citations, and you are
free to use this document as a guide in your studies. Used resources of other authors are
available on internet in a form of e-books, etc.

All references are mentioned at the end of this document. Moreover, this document contains
some interactive links to such resources that can be downloaded in form of PDF document.
E.g. [1] — This resource is published under Creative Commons license, and can be downloaded
to your local storage. Important references are highlighted in the “MUST READ"” block.

@ This is a “MUST READ” block. Mentioned resources are important!

See the next slide to read how to prepare required resources and enable linkage between
documents.

1194

Linking Required Resources |||||

@ Download [1] (version 2020-02-29) from here:
http://www.ece.uvic.ca/~mdadams/cppbook

® Save the file in the same location (presentation location).
©® Change the filename to “Adams2020-02-29.pdf" (case sensitive).
O Click here to open the document and verify correct linkage.

@ Use "Alt+Tab" to swap between documents in your PDF reader (depending on type and
version of your reader).

2194

http://www.ece.uvic.ca/~mdadams/cppbook

How to work with this document

C++ Basics |||||

The basics of C, C++, and C# or Java languages were introduced in the previous courses
(Introduction to Programming, Object Oriented Programming, Programming in C# |, or

Programming in Java |). Moreover, students of this course should have completed the courses
Algorithms |, and Algorithms II.

That is why this document is focused only on the main aspects of C++ language and
important features that can help you in your further programming.

3194

C++ !

@ See a brief history in [1] page(s) 28, and for more details go to [1] page(s) 36-56.
Pros:

e standardized language with history

e powerful language, low-level access to hardware

* multi-platform
e supported by many vendors — compilers, tools and libraries, optimizations, ...
® wide application area — games, embedded systems, Al, HPC, telecommunications,
databases, . ..
Cons:

® managed code — but smart pointers can help us
® types, memory management — nowadays, programming languages tries to not care

Another “first” step to C++

Software Development Environment |||||

Generally, there exist many development environments that can be used, e.g. Dev C++,
VSCode, CLion, Code::Blocks, Eclipse, CodeLite, Qt Creator, Brackets, Atom, Visual Studio,

Recommended SDE for Linux:

¢ VSCode with required extensions (depending on the selected toolchain)

Recommended SDE for Windows:

e Visual Studio in case you want MS VC++ Compiler and MS Build Tool (but Clang and
CMake are also supported)

¢ VSCode with required extensions (depending on the selected toolchain) in case you want
to use primarily other toolchains and build tools than MS Build

5194

Another “first” step to C++

From Windows to Linux:

Using Windows Subsystem for Linux (\WSL2), you can work in an “embedded Linux” within
your Windows. VSCode installed on windows can run linux build tools, GNU toolchain,
... — dual boot is not needed anymore!

® VSCode with required extensions (depending on the selected toolchain) in case you want
to use other toolchains and building tools

Thanks to WSL2, there is no need to install forks of linux tools for windows, e.g. Cygwin,
MinGW, MSYS2.

6194

https://docs.microsoft.com/en-us/windows/wsl/install-win10

Simplified Toolchain |||||

Generally, toolchain is a collection of programming tools used for developing software
applications. From perspective of developing C++ application on a selected platform, the set
of tools contains:

® Preprocessor: source files (SRC) — translation units (TU)
e Compiler: TU — ... — Assembly Code (AC)
® |exical Analyzer: TU — tokens
® Syntax Analyzer: tokens — Syntax Tree (ST)
® Semantic Analyzer: ST — Semantic Structures (SS), check for type mismatches,
incompatible operands, function calls with improper arguments, undeclared variables, ...
® Intermediate Code Generator: ...— Intermediate Code(IC) for abstract machine
® Code Optimizer: IC — Optimized Code (OC), unnecessary code is removed
® Code Generator: OC — Assembly Code (AC), allocate storage and generate relocable
machine code

e Assembler: AC — Object Files (OF)
® Linker: OF — Executables

Preprocessor - Building Translation Units |||||

® C++ source files generally have the .cpp, .cxx or .cc extension suffixes.

® A C++ source file can include other files, known as header files, with the #include
directive. Header files have extensions like .h, .hpp, or .hxx, or have no extension at all.

® Only source files are passed to the compiler (to preprocess and compile it). Header files
aren't passed to the compiler, they are included from source files. Thus each header file
can be opened multiple times during the preprocessing phase of all source files.

e A translation unit (TU) is build for each source file. Remember TU when we will speak
about scope of some variables.

® Preprocessor handles #include, #define, #ifndef, #. .. in the source codes.

8| 194

Another “first” step to C++

Listing 1: helloVSB.cpp
| #include <iostream>

\
|using std::cout;
|using std::endl;
\

|int main(int argc, char*x argv)

[{

| cout << "Hello VSB" << endl;
| return 0;

\

}

Listing 2: Getting TU from the source file using GCC

g++ —-E helloVSB.cpp -o helloVSB.11i

See the number of lines in the generated output file helloVSB.ii !l

@ Get more technical notes on preprocessor in [1] page(s) 81-86.

9194

Compiler - Building Assembly Code |||||

® The compiler parses the pure C++ source code (now without any preprocessor directives)
and converts it into assembly code.

® Performs code optimizations on several levels.

® Finally invokes underlying back-end (assembler in toolchain).

Listing 3: Getting assembly code from the source file using GCC

g++ =S helloVSB.cpp
g++ -S helloVSB.cpp -o helloVSB.s

Listing 4: Getting assembly code for TU file using GCC

g+t+ =S helloVSB.1i1
g++ -S helloVSB.ii1 -o helloVSB.s

10 | 194

Assembler - Building Object File |I|I|

The assembler converts the file that's generated by compiler into an object code file.
Produces binary file in some format (ELF, COFF, a.out,...).

Final object file contains the compiled code (in binary form) of the symbols defined in the
input.

Symbols in object files are referred to by name.

Object files can refer to symbols that are not defined. Linker should solve this.

Listing 5: Getting object file using GCC

g++ -c helloVSB.cpp
gt++ -c helloVSB.cpp -o helloVSB.o

11| 194

Linker - Building Executable |||||

Links together object files.

Checks referenced symbols within object files.

Links all the object files by replacing the references to undefined symbols with the correct
addresses.

e This output can be either a shared or dynamic library, or an executable.

® The most common errors: “Unresolved external symbol ...", or “duplicate definitions”

Listing 6: Getting executable using GCC

g++ helloVSB.o -o helloVSB
gt++ helloVSB.o aaa.o bbb.o ccc.o -o helloVSB

12 | 194

Summary on Compilation |||||

e Knowing the difference between the compilation phase and the link phase can make it
easier to hunt for bugs.

e Compiler errors are usually syntactic in nature — a missing semicolon, an extra parenthesis.
e Linking errors usually have to do with missing or multiple definitions.

e Usually, you want to run the whole toolchain at once with all supplementary options, e.g.
include directory (-1), include file (-i), link directory (-L), link library (-1), set optimization
level (-O*), and much more.

e Setting of different compilers may differ in notion, but the main concept is the same.
See the summary of GCC options.

See the summary of MS VC options.
See the summary of Clang options (LLVM).

13 | 194

https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://docs.microsoft.com/en-us/cpp/build/reference/compiler-options-listed-by-category?view=msvc-160
https://clang.llvm.org/docs/ClangCommandLineReference.html

Build Tools |||||

Build tools simplify process of compilation, provide configuration wizards, and store all custom
settings in some user-friendly format. They provide some kind of scripting or automating the
process of compiling source code into binary code, optionally the have GUI. There exist several
build tools, e.g. MS Build, Ninja, GNU Make, Qt Build System, boost.build, ...

Moreover, there exist so called Build-script generators (CMake, Mason, GNU Build

System, ...) whose purpose is to generate files to be used by a native build tool. They
represent a layer over build tools and simplify configuration in some way, e.g. multi-platform or
cross-platform compilation.

14 | 194

CMake |||||

® Does not create any output in the source directory, i.e. bin, obj, etc. It performs an
out-of-source build and performs the build there.

® |t generate files required by suitable buildsystem, and then can invoke a build tool to
process the generated buildsystem file.

e Usually, script files are written; otherwise CMake Gui can help with settings.

Typical simplified scenario:
@ Create a CMakeList.txt for your project. This is an entry point for the CMake tool.

® Configure your project: CMakeList.txt and global definitions are processed, CMake cache
is created, project targets are created.

© Build your project: files required by a buildsystem are generated (e.g. *.sIn, *.ninja, ...),
after than the selected buildsystem can be called — source code is compiled

15 | 194

Another “first” step to C++

Listing 7: A minimalistic CMake example

cmake_minimum_required (VERSION 3.0)

Global variables

set(MY_ROOT_SRC_DIR ${CMAKE_CURRENT_SOURCE_DIR} CACHE PATH "Root")

set (CMAKE_RUNTIME_OUTPUT_DIRECTORY ${MY_ROOT_SRC_DIR}/bin)

set (CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/debug)

set (CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/release)

Project definition
set(MY_PROJECT_NAME "helloVSB" CACHE STRING "Project")

project(MY_PROJECT_NAME CXX) #start a new project
set (CMAKE_SYSTEM_NAME Linux) # Windows/Linux/Darwin/Android/FreeBSD/MSYS
set (CMAKE_SYSTEM_PROCESSOR x86_64) # x64 arch.

Compiler definition

set (CMAKE_C_STANDARD 11)

set (CMAKE_C_STANDARD_REQUIRED ON)
set (CMAKE_CXX_STANDARD 17)

set (CMAKE_CXX_STANDARD_REQUIRED ON)

Targets definitions

#include_directories(BEFORE ${MY_SRC_DIR}) #include directory for all defined targets
#1link_directories(BEFORE ${MY_SRC_DIR}) #link directory for all defined targets
set(MY_TARGET_NAME "helloVSB" CACHE STRING "Target")

add_executable (${MY_TARGET_NAME} ./src/helloVSB.cpp) #add the first target = further app. or library
target_include_directories(${MY_TARGET_NAME} PRIVATE "./src/.hpp") #inc. dir. for a given target only

#target_link_libraries($S{MY_TARGET_NAME} PRIVATE "some_library_name") #link library for a given target only

16 | 194

Another “first” step to C++

Some definitions can be changed when calling CMake from GUI, e.g. calling CMake commands
via command bar in VSCode. See CIMake documentation for more details.

Figure 1: VSCode with CMake command bar on bottom (extensions: ms-vscode.cmake-tools and twxs.cmake)

©00 O ook Db ey 3 (g 1000 SV L with Vil S e 2019 e o] @ buid 3 B Dol 1032 ol Spuces s UTED U5 Ovke Wiz R

17 | 194

https://cmake.org/documentation/

C++ Basics

C++ Types, and Literals !

@ See the list of fundamental c++ types in [1] page(s) 88-89.

@ Read more about literals in [1] page(s) 90-99.

There are also type aliases of fundamental types defined in other header files that can be
included, e.g. <bits/types.h>, <stdint.h>, <cstdint>, etc. However, there can be some
uncertainties when including header files. Header files prior to C++11 should be avoided.

E.g. including C++ header file <cstdint> imports the symbol names in std namespace and
possibly in global namespace, on the other hand including C header <stdint.h> imports the
symbol names in global namespace and possibly in std namespace.

18 | 194

C++ Basics

Type Aliases |I|I|

Sometimes, it is useful to simplify type names to increase code readability.

C style: typedef creates an alias that can be used anywhere in place of a (possibly complex)
type name. The same can be used in C++. typedef is a kind of init-statement.

C++ style: using statement is a preferable way to create alias for an existing type. It is also

called alias-declarations. Alias-declaration is not an init-statement, and thus may not be used in
contexts which allows initialization statements.

19 | 194

C++ Basics

Listing 8: Type aliasing

#include <cstdint>
#include <iostream>

using std::cout;
using std::endl;

// typedef unsigned long long ULL; // C-style with typedef
// typedef unsigned long long* pULL; // C-style with typedef
using ULL = unsigned long long; // C++ style
using pULL = unsigned long longx; // C++ style

int main(int /*argc*/, char*x /*xargvx/)

ULL x = 123ull;

pULL px = &x;

cout << typeid(x).name() << endl;
cout << typeid(px).name() << endl;
return 0;

20 | 194

C++ Basics

Listing 9: “Minor” differences between typedef and using

void seeTheDifference()
{
for (typedef int Foo; Foo{} != 0;) {} // OK
//for(using Foo = 1int; Foo{} != 0;) {} // Error: using can not be used in the init-statement of the FOR
if (typedef int Foo; true) { cout << Foo{} << endl; } // OK
//if (using Foo = 1int; true) { cout << Foo{} << endl; } // Error: using can not be used in the init-statement of <«
the IF
//C++20 is needed
// for(typedef struct { int x; int y;} S; auto [x, y] : {S{1, 1}, {1, 2}, {3, 5}})
/11
// cout << x << " " <<y << endl;
/1 }
// Can not use ‘‘using’’ here at all
}

There are more cases when using keyword is more usable for the programmers, e.g. in alias
templates, that will be discussed later.

21| 194

Getting Type Info |I|I|

C++ has several operators dealing with types. They get more details on types, e.g. typeid, or
they retrieve a complete type from some variable, e.g. decltype.

typeid
® Returns a std::type info object, then e.g. name(), hash code() can be called.
e “<typeinfo>" header must be included in advance.

e typeid expression is resolved at compile time when applied to a non-polymorphic type;
otherwise is resolved at runtime.

Listing 10: Example on typeid

| int x = 123;

| cout << typeid(x).name() << endl; // using a variable name
| cout << typeid(x).hash_code() << endl;

| int %y = &x;

} cout << typeid(y).name() << endl;

\

\

cout << typeid(y).hash_code() << endl;

cout << typeid(int).name() << endl; // using a type name

22 | 194

C++ Basics

decltype
® |nspects the declared type of an entity or the type and value category of an expression.
e Can be used to determine “auto” type.

e Everywhere you want to get the type of an expression or declaration, you use decltype.

Listing 11: Example on decltype
int x = 123;

cout << typeid(x).name() << endl; // using a variable name
decltype(x) y = 123; // retrieving type from a variable
cout << typeid(y).name() << endl; // float

auto z = x + 0.5f;
decltype(z) w;
cout << typeid(w).name() << endl; // float

decltype will be discussed in more detail with template classes and methods, e.g.

Listing 12: Example on decltype -> trailing type

template<typename A, typename B>
auto add(A const& a, B const& b) -> decltype(a + b) { return a + b; }

23 | 194

C++ Basics

auto: Consequences of Deduction Rules |||||

auto mostly follows the same type deduction rules as template argument deduction. The only
difference is that auto will deduce std::initializer _list from a braced-init-list in some cases, while
template argument deduction doesn't do this. This will be discussed later.

However, the behavior in some cases is the same as what template argument deduction would
do when deducing types from a function call. See the next example, where const is expected,
but it is omitted. auto by itself means that you want a new, locally-owned variable with a copy

of the given value. const-ness is not part of value. An int is an int whether it's specified using a
literal, a named constant, an expression, or a non-const variable.

24 | 194

C++ Basics

Listing 13: Simple examples on type deduction

const int x0 = 123; //It might actually be initialized to zero. Depends on the context.

auto x1 = x0;

cout << typeid(xl).name() << endl; //int -> If some T is a cv-qualified type, the top level
//cv-qualifiers of T’s type are ignored for type deduction

auto& x2 = x0;

cout << typeid(x2).name() << endl; //const int -> the const qualifier is retained. x2 receives
//type const int& and aliases x0.

const auto x3 = x0;

cout << typeid(x3).name() << endl; //const int
decltype(auto) x4 = x0; //since C++14: const 1int
auto&& x5 = x0; //x5 receives type const int& and aliases x0.

25 | 194

C++ Basics

Memory Schema

@ See the memory organization in [1] page(s) 643-646.

Generally, there can be more segments, but this is the simplified schema.
For more details, try to search for Executable and Linkable Format (ELF).

® Environment variables and CL arguments “sit" at highest addresses.

e Stack: Growing but limited amount of memory containing stack frames
(variables, function arguments, function return values, and caller return
addresses)

® Heap: All dynamic allocations take place here.
e BSS: Uninitialized data, typically set to zero when program loaded

e |nitialized data: Contain variables initialized to a concrete value upon
program loading, prior to execution.

® Code segment: Read-only place where the program “sits” in memory.

command-line arguments
and environment variables

uninitialized data
(8SS)

initialized data

code segment
(text)

high
address

low
address

-«

26 | 194

Storage Duration |||||

It is important to know how long objects stay in memory to avoid errors that are hard to
discover without help of address sanitizer; e.g. a function returns a pointer to a variable
allocated within the function.
There are four types of duration:
e automatic: duration is defined by an enclosing code block
eg. { int i = 123; }
e static: duration is defined by lifetime of the program, from the start to the end
e.g. all objects declared at namespace scope, or declared as static or extern

e dynamic duration is defined for all objects allocated dynamically. It is defined by allocation
and deallocation. NOTICE: Pointers to these objects have own duration!!!

e.g. MyClass* ptr = new MyClass(); ... delete ptr;

e thread duration is related to thread lifetime, objects must be declared as thread local.

27 | 194

Initialization |||||

C++ has several ways how to initialize objects: Initialization is a process of providing initial
value to object at time of its construction. Initialization # declaration.

Listing 14: Possible Initializations
struct S { int a; double b; };

int a = 123; // CONSTANT initialization -> static storage duration
const int b = 123; // CONSTANT initialization -> static storage duration
static int ¢ = 123; // CONSTANT 1initialization -> static storage duration
int main(int argc, charx* argv)
{
static int d = 123; // CONSTANT -dnitialization -> static storage duration
static int e; // CONSTANT -initialization -> ZERO +initialization
int f; // DEFAULT 1initialization -> automatic, static, or thread-local storage;
//INDETERMINATE value.
int *g = new int; // DEFAULT dnitialization -> dynamic storage; INDETERMINATE value.

// DEFAULT 1initialization is performed als for all non-static data members
// not mentioned in called constructor initializer list

//int h(); // MOST VEXING PARSE: Variable creation vs. function call ?2??

// But in case of this, it is a valid VALUE INITIALIZATION
// Foo::Foo() : x() {} where x is a data member of Foo class

28 | 194

C++ Basics

int i{}; // VALUE initialization to the default value -> ZERO +initialization
int *j = new int(); // VALUE finitialization -> what happen is based on concrete type
int *k = new int{}; // VALUE finitialization -> what happen 1is based on concrete type
int 1(123); // DIRECT initialization; there can be more arguments
int m{123}; // DIRECT initialization; there can be more arguments
int *n = new int(123); // DIRECT initialization; there can be more arguments
int o = 123; // COPY dinitialization
int p = o3 // COPY -dnitialization
int q = {p}; // COPY Hinitialization

// LIST dnitializations
S r{ 123, 1.23 }; // DIRECT LIST initialization
N coo = ST 123, 1.23 §3 // DIRECT LIST 1initialization
S *s = new S{123, 1.123}; // DIRECT LIST initialization
S t = {123, 1.123}; // COPY LIST dnitialization

// List initialization has more forms, e.g. aggregate or reference
//WHAT ABOUT ARRAYS?
char u[10]; // u has INDETERMINATE value
int v[10] = {1,2,3}; // COPY LIST dnitialization -> AGGREGATE initialization, arrays
char w[10]{"Hello VSB"}; // DIRECT LIST initialization -> AGGREGATE initialization, arrays
char x[10]{}; // DIRECT LIST initialization
char *z = new char[10]{"Hello VSB"}; // DIRECT LIST initialization -> AGGREGATE initialization, arrays
return 0;

}

29 | 194

Initialization vs. Assignment |||||

The following class Foo illustrates the calling sequence only. A new macro PRINT _ was

defined just to make the notation more readable. Generally, macros should be avoided in
modern C++.

Listing 15: Foo Class with COUTs
#include <iostream>

using std::cout;
using std::endl;

#define __PRINT__ cout << __PRETTY_FUNCTION__ << endl; //use __FUNCSIG__ on MVCS

class Foo

{
public:
Foo() { __PRINT__ }
Foo(int _i) { __PRINT__ }
~Foo() { __PRINT__ }
Foo& operator=(const Foo &a) noexcept { __PRINT__ return xthis; } //copy assignment
Foo& operator=(Foo &&a) noexcept { __PRINT__ return *this; }; //move assignment

};

30 | 194

C++ Basics

void initialization()

__PRINT__
Foo x{123};
}

void assignment()

__PRINT__
Foo x;
x = 123;

int main(int argc, charx* argv)

initialization();
cout << endl;
assignment();
return 0;

void initialization()

Foo
Foo

::Foo(int)
::~Foo ()

void assignment()

[Fe©5 5
ROOHE

Foo
Foo
Foo

Foo ()

Foo (int)

&Foo: :operator=(Foo &&)
::~Foo()

::~Foo ()

Init vs. Assignment: See the difference in the calling sequences on the right.
If possible, always prefer direct initialization over assignment (copy initialization). Assignments
create temporary objects that are later discarded.

31| 194

C++ Basics

Uniform Initialization |||||

Use the brace-initialization form {} to uniformly initialize objects regardless of their type. This

can be used for both direct initialization and copy initialization. This initialization is preferred
in modern C++.

Initialization of standard containers (such as the vector and the map, ...) is possible because
all standard containers have an additional constructor that takes an argument of the type

std::initializer list<T>.
The way initialization using std::initializer _list<T> works is as follows:

® The compiler resolves the types of the elements in the initialization list (all the elements
must have the same type).

® The compiler creates an array with the elements in the initializer list.
e Compiler creates an std::initializer list<T> object to wrap the previously created array.
® The std::initializer _list<T> object is passed as an argument to the constructor

32 | 194

C++ Basics

For an empty braced initializer list, the default constructor is called; otherwise constructor
taking initializer list takes precedence over other constructors.

Listing 16: List Initialization (Brace Initialization)

#include <iostream> Foo::Foo()
#include <vector> Foo::Foo(initializer_list<int>)
using std::cout; Foo::Foo(initializer_list<int>)

using std::endl;

using std::vector;

using std::initializer_list;

#define __PRINT__ cout << __PRETTY_FUNCTION_

_ _ _ _ << endl;
class Foo
{
vector<int> m_data;
public:
Foo() : m_data{} { __PRINT__ }
Foo(initializer_list<int> list) : m_data{list} { __PRINT__ }
};

int main(int argc, char*x argv)

Foo fo{}; //

Foo f1{123, 321}; //0K
Foo f2 = {123, 321}; //0K
vector<int> v0{1,2,3}; / /0K

vector<int> vi = {1,2,3}; //OK

}

33| 194

C++ Basics

Initializing Non-static Members |||||

See the recommended initialization of non-static members in the code.
Listing 17: Where to Init

struct Bar { int a; double b; };
class Foo

const int x = 123; // [1] both static and non-static constants
Bar b{1l, 1.23}; // [2] default values for members of classes with multiple constructors
int y;
public:
Foo() {}
Foo(int _y) : y{_y} {} // [3] use direct-list initialization for members that don’t have default values

Foo(int _y, Bar _b) : y{_y}, b{_b} {}
Foo(int _y, Bar _b)
{

y = _Y; // [4] use assignment in constructors when the other options are not possible.
b = _b;

};

34| 194

The Keyword auto |||||

auto prevents correctness and performance issues that can bedevil manual type declarations,
but some of auto’s type deduction results may be wrong from the perspective of a programmer,
and thus it is important to know how to guide auto to the right answer.

The placeholder auto may be accompanied by modifiers, such as const or &, which will
participate in the type deduction.

Listing 18: Simple examples on type deduction

auto getInt() -> int { return 123; } // Trailing type int
void usingAuto()
{
auto i = 123;
auto f = 123.0f;
auto s = "Hello VSB";
auto& j = 1;
auto a = { 1, 2 };
auto b{4};
for (auto x : a) {}
auto r = getInt();
}

35 | 194

C++ Basics

Reference vs. Pointer |||||

Pointer is an object whose value is an address in memory where another object (instance,
variable, function, ...) is stored.

@ Read more basics about pointers in [1] page(s) 105-106.

Reference is an alias for already existing object — a reference can not be null and its value
must always exist.

@ Read more basics about pointers in [1] page(s) 107-109.

36 | 194

Const vs. Constexpr Keywords |||||

const

Creates a variable whose value can not be changed.
Attempt to modify this value causes compilation error.
Needs an initializer.

Commonly used when the same “magic value” appears in code multiple times — avoiding
mistakes when changing the value.

Can be applied to member methods.

Use const to indicate that the value can not be modified, or that the member function is
constant.

Common syntax: const <type> <variable>{initializer}, e.g. const int c{123};

37 | 194

C++ Basics

Listing 19: Example on const
int getA() { return 123; }

void t_const()

const int co = 123; // this can be evaluated at compile time because its address is never read
cout << cO << endl;

int p[co]; // OK

const int cl = getA(); // return type of getInt is not const -> this constant is evaluated at runtime
//int pl[cl]; // Compiler error

38 | 194

C++ Basics

constexpr

Represents a constant expression.

Such expressions can be evaluated at compile time — performance increasing.
Is applied on variable declarations or functions.

Can be applied to member methods.

Functions can be constexpr if they return a value that can be evaluated at compile time
and return a literal type (void, scalar types, references, . ..)

In C++11, a constexpr function should contain only one return statement. From C++14,
they can have more than one statements.

All constexpr functions are implicitly inline.
Constexpr is always const, but const is not constexpr.

Use constexpr to indicate expressions that can be evaluated at compile time.

39 | 194

C++ Basics

Listing 20: Example on constexpr

constexpr int getB() { return 123; }
void t_constexpr()
{
constexpr int cO = 123; // evaluated at compile time
cout << cO << endl;
int p[cO]; // OK
constexpr int cl = getB(); // getInt() is evaluated at compile time as well
int pl[cl]; // OK -> evaluated at compile time
}

Listing 21: Behavior of constexpr function

constexpr int sum(int a, int b) { return a+b; }

void t_mix()

constexpr int cO = sum(1,2); // behaves as a constexpr function, the value 1is evaluated at compile time.
const int cl = sum(1,2); // behaves as a constexpr function, the value is evaluated at compile time.
int c2 = sum(1,2); // behaves as a standard function, the value is evaluated at runtime.

//constexpr int c3 = sum(c2,1); // Compiler error, c2 is not a compile time constant -> can not be used
// to evaluate compile time expression

40 | 194

C++ Basics

The Statement constexpr-if |||||

It is possible to use constexpr after if keyword to indicate constexpr-if statement.
This constexpr-if statement is evaluated at compile time and all branches of if statement that

are not taken are discarded.
e This is often used in templated code when it is necessary to do certain things differently,
e.g. depending on the type. This will be discussed later.

Generally, it can be used in if statement for those expressions that can be evaluated at compile

time.

Listing 22: Using constrexp-if

| template <typename T> void t_constexpr_if()

|bool isFloatValue(T x)

I { constexpr int x = 123;

\ if constexpr (std::is_same_v<T, float>) if constexpr (x < 100)

| cout << "x < 100" << endl;
| return true; else

| cout << "x >= 100" << endl;
\ return false; 3

|3

41 | 194

Helper Functions, Definitions

Helper Functions, Definitions |||||

Before you read the following slides, you should be familiar with some definitions that will be
used. These common definitions simplify code examples.

using statement will be used to make symbol name from the given namespace accessible for

unqualified lookup as if declared in the same class scope, block scope, or namespace as where
this using-declaration appears.

Listing 23: Included headers + usings

| #include <iostream>
| #include <iomanip>
}using std::cout;
|using std::endl;
|using std::left;
|using std::setw;

42 | 194

Helper Functions, Definitions

Some helper template functions are defined. Template functions and classes will be discussed
later. For now, this is just a notice that this functions can be used in below mentioned
examples.

Listing 24: Printing size of variables and types, + alignments

template<class T>
constexpr void printSizeInfo(const T value)
{

cout << "sijze: " << left << setw(5) << sizeof(T) << endl;

template<typename T>
constexpr void printSizeInfo()
{

cout << "size: " << left << setw(5) << sizeof(T) << "alignment: " << alignof(T) << endl;

43 | 194

Helper Functions, Definitions

Other template functions provide information on data member offset. The standard C++
keyword offsetof can be used instead, but it works on 100% for standard-layout classes only,
otherwise it is conditionally supported.

On the other hand, this can not be used at “compile-time” because of implicit casting leading
to forbidden reinterpret cast.

Listing 25: Getting data memeber offset

template <typename T, typename U>
size_t offset_of (T const U::* member)
{
const U object {};
return size_t(&(object.*member)) - size_t(&object);

}
template <typename T, typename U> void printOffsetInfo(T const U::* member)
const size_t offset = offset_of(member);

cout << "class size: " << left << setw(5) << sizeof(U) << " member size: " << left << setw(5) << sizeof(T) << "<«
offset: " << offset << endl;

44| 194

Helper Functions, Definitions

Finally, a helper function to print value of type T in its binary form is provided. 2° bit is on the
right, 2572€of (T)*8—1 hit is on the left, i.e. least significant bit is on the right in the output.

Listing 26: Print bits

template<typename T>
bool printBits(const T& value)

{
const unsigned charx ptr = reinterpret_cast<const unsigned char*>(&value) + sizeof(T) - 1 ;
for (int di=sizeof(T); i>0; i--, ptr--)
{
for (int j=7; j>=0; j--)
{
cout << ((*ptr & (1 << j)) > 0 2 "1" : "o");
}
cout << endl;
return true;
}

Listing 27: Use this in C4+420 and above

#include <format>

const unsigned charx ptr = reinterpret_cast<const unsigned char*>(&some_variable);
std::format("{:b}", *ptr);

45 | 194

Structures

Introduction |||||

@ See the basics for c++ structs/unions/classes in [1] page(s) 234-348.

® struct is a group of data elements grouped together under one name. These data
elements, known as members, can have different types and different lengths.

® Struct is a class where members are public by default.

e Other access modifiers can be used as well; However, it is a best-practice to make
structures as small as possible without extra definitions that brings structures closer to
standard classes.

® Ordering of members can play an important role in size and alignment of the structure.

46 | 194

Structure Examples |||||
Listing 28: Simple structures Listing 29: ... with constructors
struct SO //Everything is public by default !!! struct S3
{

int a3 int a;

char b; char b;
15

S3() : a(123), b(’a’) {}

struct S1 S3(int _a) : a(_a), b(’a’) {}
{

int a; // This will cause an error because of default value
private: // Access modifier other than public // —> ambiguous call of constructor

char bj // —-> remove default value
18 S3(int _a, char _b = ’a’) : a(_a), b(_b) {}
struct S2 // Constructor Delegation

S3(char _b) : S3(123, _b) {}
int a = 123; //Default values
char b // More on constructors and operators will be <«

13 explained on classes !!!

};

47 | 194

Structures

Listing 30: Possible initializations (some of them can not be used when members are of complex types)

// If a structure if reduced to its bare minium, with no constructor,

// no method, no inheritance, no private method or data, no member initializer,

// if a structure only defines public data members, then an special initialization
// feature of C++ (aggregate initialization) can be used.

SO s0{4,’x’};

//S1 s1{4}; // Can not use aggregate initialization because of private data member

S2 a{321,’a’};
S2 b{’x’};
S2 c{321};

s2 d = {321,’a’};

S2 e{a: 123, b: ’x’ }; // old GNU style
S2 f{b: ’x’, a: 123}; // old GNU style
’ // new

S2 g{.a = 123, .b = ’x’};

S2 h = {.a =123, .b = ’x’}; // new

S3 13

//S3 j{123}; // Error: call to constructor of ’S3’ s ambiguous => compiler does not know what <«

constructor to call !!!
S3 k{123, ’c’};

48 | 194

Unions

Introduction |||||

@ See the basics for c++ structs/unions/classes in [1] page(s) 234-348.

® union is a group of data elements grouped together under one name. These data
elements, known as members, can have different types and different lengths.

® Unions is a class where members are public by default.

e Other access modifiers can be used as well; However, it is a best-practice to make
structures as small as possible without extra definitions that brings structures closer to
standard classes.

® Ordering of members can play an important role in size and alignment of the structure.

® Union is a special class type that can hold only one of its non-static data members at a
time.

49 | 194

Unions

® Unions cannot contain a non-static data member with a non-trivial special member
function (copy constructor, copy-assignment operator, or destructor).

e |f a union contains a non-static data member with a non-trivial special member function
(copy/move constructor, copy/move assignment, or destructor), that function is deleted by
default in the union and needs to be defined explicitly by the programmer.

50 | 194

ions

Unions Examples

Listing 31: Simple unions

Listing 32: ... and their usage

union UG
int b
bool a;
};
union MIX
struct {
char a;
char b;
char c;
char d;
};
int m_data;
};

// size: 4

// size: 4

alignment: 4

alignment: 4

printSizeInfo<uo>();

U0 u{true};

cout << "u.a = " << u.a << endl;
cout << "u.b = " << u.b << endl;
u.a = false;

cout << "u.a = " << u.a << endl;
cout << "u.b = " << u.b << endl;
Uo v{513};

cout << "v.a = " << v.a << endl;
cout << "v.b = " << v.b << endl;
v.a = false;

cout << "v.a = " << v.a << endl;
cout << "v.b = " << v.b << endl;

MIX m{1,3,7,15};
printSizeInfo<MIX>();
printBits(m.m_data);

// Ox ff = ob
m.m_data = 0x000000ff;
printBits(m.m_data);
printBits(m.a);

111111115

51| 194

Alignment, Padding

Alignment |||||

Processors do not access memory one byte at a time, but in larger chunks of powers of two (2,
4, 8, 16, 32, and so on). This means, that it is important that compilers align data in memory
so that it can be easily accessed by the processor. In case of misalignment, data must be read
in multiple chunks, shift, unnecessary bytes must be discarded, and the rest combined.

Compilers align variables based on the size of their data type. Typically, these are 1 byte for
bool and char, 2 bytes for short, 4 bytes for int, long, and float, 8 bytes for double and long
long, and so on.

When it comes to structures or unions, the alignment must match the size of the largest
member in order to avoid performance issues.

52 | 194

Alignment, Padding

Listing 33: Simple alignment, see also orderings of bytes

struct SO

{
bool a;
char b;

};

struct S1
{ .
int aj
bool b;
};

struct S2
{
bool a;
int b

};

// size=2, alignment=1, bytes=|a|b]|

// size=8,

// size=8,

alignment=4, bytes=|aaaal|b...|

alignment=4, bytes=|a...|bbbb|

53 | 194

When it comes to structures or
unions, the alignment must match
the size of the largest member in or-
der to avoid performance issues.

The some padding must be added int
the inner representation to match this
alignment.

Also it is a good practice to place
members within the structure accord-
ing to its size in decreasing order (S1
vs. S2).

Alignment, Padding

alignas keyword |||||

The alignas specifier can be applied

Listing 34: Aligning data members, see also orderings of bytes both to the type deCIaratIOn and the
?truct S3 // size=8, alignment=4, bytes=|axxx|bbbb| member data declarations.

bool aj

char x[3]; // manual padding " " . . .
L, e Manual” aligning/padding can be

done with including extra data mem-
bers (see S3).

struct alignas(4) S4 // size=4, alignment=4, bytes=|ab..

bool a;
char b;
15

struct alignas(8) S5 // size=16, alignemnt=8
{

alignas(2) bool aj;

alignas(8) int b;

};

54 | 194

Alignment, Padding

#pragma pack(1) |||||

#pragma pack(1) instructs the compiler to pack structure members with particular alignment.
Most compilers, when you declare a struct, will insert padding between members to ensure that
they are aligned to appropriate addresses in memory. This avoids the performance penalty and
#pragma pack(1) can lead to worse performance.

@ See this case study on pragma pack

55 | 194

https://devblogs.microsoft.com/oldnewthing/20200103-00/?p=103290

bitfields

bitfields

Bitfields !

Data structure that declares data member with explicit size in bits. Adjacent bitfield members
may be packed to share and straddle the individual bytes.

® The name of the bitfield (member) that is being declared is optional -> nameless bitfield
introduces the specified number of bits of padding

® Because bitfields do not necessarily begin at the beginning of a byte, address of a bitfield
member cannot be taken. In other words, we cannot have pointers to bitfield members as

they may not start at a byte boundary. Pointers and non-const references to bitfield
members are not possible.

e A bitfield member cannot be static

56 | 194

Bitfields Examples |||||

Listing 35: Bitfields examples Listing 36: Usage
struct SO printSizeInfo<Se>();
SO s0{.a = 0bl1ll, .b = 1};
uint8_t a : // 3 bits printBits(s0);
uint8_t : 2; // 2 bits unused = ¢
COMPILER DO NOT OPTIMIZE, AND PREFERES SMALLER<+— printSizeInfo<S1>();
SIZEOF THE STRUCTURE !!! S1 si{.a = Ob111l, .b = 1, .c = 1};
uint8_t b : 23 // 2 bits printBits(sl);
}s
struct S1 size: 1 alignment: 1
{ 00100111
uint8_t a : 3; // 3 bits SRECH) alignment: 1
uint8_t : 2; // 2 bits unused => 0100000100000111
BUT COMPILER OPTIMIZE THIS AND ALIGN NEXT DATA<+—
TO NEXT BYTE !!!
uint8_t b : 6; // 6 bits
uint8_t c : 23 // 2 bits
}s

57 | 194

Listing 37: Bitfields examples Listing 38: Usage
struct S2 printSizeInfo<s2>();
{ S2 s2{.a = 0bl11l, .b =1, .c = 1};
uint8_t a : 3; // 3 bits printBits(s2);
uint8_t b : 2; // 2 bits unused
uint8_t ¢ 6; // 6 bits printSizeInfo<S3>();
uint8_t d 2; // 2 bits S3 s3{.a = 0b111l, .b =1, .c = 1};
38 printBits(s3);
struct S3
{ size: 2 alignment: 1
uint8_t a : 3; // 3 bits: value of a 0000000100001111
uint8_t : 0; // 5 bits: unused, start at new < | EXPIYED) alignment: 1
byte 0100000100000111
uint8_t b : 63 // 6 bits: value of b
uint8_t c : 23 // 2 bits: value of
};

58 | 194

Classes

Classes

Introduction |I|I|

@ See the basics for c++ classes in [1] page(s) 234-348,

In the following slides, some key features of classes will be highlighted. It is important to read
above mentioned slides, or remember thinks from the previous subjects.

59 | 194

Size of a Class |||||

Now, you should know that class can contain data members, function members, and type
members. However, it can consist of zero or more members.

Only non-static data declarations in a class definition add anything to the size of class objects!
But the sizeof an empty class in not zero!

Until C++20, the minimum size for all objects is at least 1 byte => also instances of an empty
class must occupy at least 1 byte used to unique address identification.

60 | 194

Classes

Listing 39: Example on empty classes

class EmptyClass{};

class ClassWithEmptieso{
EmptyClass e0;
EmptyClass el;
EmptyClass e2;

};

//Since c++20, there 1is [[no_unique_addess]] attribute
class ClassWithEpmtiesl

{
int x;
[[no_unique_address]] EmptyClass e;
15
void t_emptyClass()
{
printSizeInfo<EmptyClass>(); // probably 1
EmptyClass e0;
printSizeInfo(e0); // probably 1
printSizeInfo<ClassWithEmpties0>(); // probably 3
printSizeInfo<ClassWithEmptiesl>(); // probably 8 in c++ < 20,
// 4 in c++ >= 20 with compiler support
}

61 | 194

Classes

EBO

® The “Empty Base Class Optimization”, also known as the EBCO or EBO is a common
compiler optimization.

e This is a real useful in case of implementation of containers as there is always a set of
stateless features (e.g. hast, allocator, ...).

e With respect to multiple inheritance, it often makes sense to rearrange the order of base
classes so that empty base classes appear first on the base class list. However, sometimes
it is better to make some shuffle of base classes to force compiler optimizations.

¢ Compilers are allowed to (and some compilers do) perform aggressive EBO optimization by
permuting the layout order of base classes.

62 | 194

Classes

Class Layout |||||

In component design, base classes are often simply collections of typedefs, static members,
enumerators, and other class members that do not occupy storage inside the class object.

Class members that don't affect layout
® static data members -> they have static lifetime or thread storage duration
® type members (included nested classes)

® non-virtual member functions
What about virtual member functions?

Only the first virtual function in a class increases its size (compiler-dependent, but on most it's
like this). All subsequent methods do not because a class instance doesn't hold pointers to
methods themselves, but to a virtual function table, which is one per class!

Remember also padding that can be added by compiler to achieve memory alignment.

63 | 194

Classes

Listing 40: Example on some class

class SomeClass
{
public:
void method@(int, float, double); // 0
void methodl() { cout << "some output" << endl; } // @
virtual void method2() { cout << "some output" << endl; } // + 8 = sizeof(voidx) on x64
private:
enum { min = 0, max = 123}; // ©
static int someStaticMember; // ©
int m_data; /] + 4
};
void t_someClass()
{
printSizeInfo<SomeClass>(); // probably 16 = | 4b m_data | 4b padding | 8b pointer to vftable |
SomeClass a;
printSizeInfo(a); // probably 16
}

64 | 194

Classes

Non-Static Data Member Layout |||||

C++ compilers did not (or very rarely) reorder member layout. Ordering should be modified to
state that members with the same access lie in the same relative order. “Non-static data

members of a (non-union) class with the same access control are allocated so that later
members have higher addresses within a class object.”

e Usually, public members are defined before protected and private.

® |t is typical that storage for a base class subobject precedes storage for derived class data
members.

® However, a compiler may elect to optimize storage use by permuting the base class
subobject order.

65 | 194

Classes

Listing 41: Interleaved Layout Listing 42: Ordered Layout
class A { class B {
public: // access specifier public: // access specifier
uint8_t a = 0bl; uint8_t a = 0bl;
uint8_t b = @bll; uint8_t b = 0bll;
private: // access specifier uint8_t e = 0b11111;
uint8_t c = 0bl11l; private: // access specifier
uint8_t d = 0b1111; uint8_t c = 0bl11l;
public: // access specifier uint8_t d = 0b1111;
uint8_t e = 0b11111; uint8_t f = 0b111111;
private: // access specifier b3
uint8_t f = 0b111111;
B3 void t_orderedlayout()
void t_interleavedlayout() printSizeInfo(); // size: 6 alignment: 1
{ B b;
printSizeInfo<A>(); // size: 6 alignment: 1 printSizeInfo(b); // size: 6
A a;
printSizeInfo(a); // size: 6 printBits(b);
// 001111110000111100000111000111110000001100000001
printBits(a); 3
// 00111111000111110000111100000111 11 1
}

66 | 194

Standard Layout |||||

Plain Old Data layout (POD layout) is a standard-layout class that also lacks:
® private or protected non-static data members
e user-declared constructors
® base classes

Regarding the layout of standard-layout classes, C++ guarantees only that:

® The first non-static data member is at offset zero. This means that it's reasonable to
reinterpret cast a pointer to a standard-layout class object to a pointer to its first
non-static data member.

® Each subsequent non-static data member has an offset greater than the offset of the
non-static data member declared before it.

® The storage for objects of the class are in contiguous memory.

® Any class, even a standard-layout class, may have padding bytes after any non-static data
member.

67 | 194

Classes

Checking Standard Layout |||||

Calling offsetof(C, M) returns the offset in bytes of non-static data member M from the

beginning of class type C. This works for standard types. For other types id is “conditionally
supported feature’.

static-assert

Use static-assert instead of assert if possible. Static assertions don't cost anything at runtime,
it is evaluated at compile-time!

Listing 43: Checking offset at compile time - see Class B above
|void t_testOffset()

[{

| printOffsetInfo(&B::b); // class size: 6 member size: 1 offset: 1

\

\ // B has private members -> not a standard layout

\ //static_assert(std::is_standard_layout_v, "B does not respect the standard layout.");
| static_assert(offsetof(B,b)==1, "Error: offset of B::b is not equal to 1.");

|3

68 | 194

Classes

Operators |||||

@ See how to access class members in [1] page(s) 239-246.

scope-resolution operator
To refer to function member of class outside of class body must use ::, e.g.

ClassName: :memberName

This operator is used also to access static members of the class, or to refer to type member
outside of class body.

member-selection operator

Use ., to access members of a class (data members, function members), e.g.
class ClassName { public: int x;};

ClassName c;

c.x = 1;

69 | 194

Implicit parameter |I|I|

this

All member functions always have an implicit parameter referring to class object.
® Implicit parameter is accessible inside member function via this keyword.
e this is pointer to object for which member function is being invoked.
e All data members can be accessed through this pointer.

® Since data members can also be referred to directly by their names, explicit use of this
often not needed and normally avoided.

70 | 194

References

References

References in C !l |||||

This is what you can remember from C language.

e |-value refers to memory location which identifies an object. I-value may appear as either
left hand or right hand side of an assignment operator(=). |-value often represents as
identifier.

e r-value refers to data value that is stored at some address in memory. A r-value is an
expression that can’t have a value assigned to it which means r-value can appear on right
but not on left hand side of an assignment operator(=).

If C++ would follow the same concept of |-values/r-value, what about this code?

Listing 44: Test

|void t_test()
{

string s = "test";
s + 1’ = s;

\
\
\
| s + 7’2 =5 + ’3%;
\

}

71| 194

References

l-value r-value

® can appears on the left side of ® can be a temporary object (without

assignment name)

® has a name ® can be a literal constant

® has an address ® can be a function return value that is not
Listing 45: lvalue examples Ivalue reference
nt . ® can be a result of built-in operators that
const string s@ = "this is const string"; is not Ivalue reference
string sl = "this is string";
intx ptr = nullptr;

72| 194

References in C4++ !l |||||

C++98 reference types are Ivalue references. C4++11 introduces rvalue reference type.

® int& is an lvalue reference.

® int&& is an rvalue reference.

e |nitializing a reference is called binding.

® Non-const lvalue reference can only bind to an Ivalue.

® Const lvalue reference can bind to an Ivalue, or an rvalue. This has some backward
compatibility reasons.

e rvalue reference can only bind to an rvalue.

73| 194

References

In fact, C++ is more complex in value definitions.

® xvalue (expiring value) - expression, which identifies a non-temporary object, which can be
moved

e |value (left value) - expression, which identifies a non-temporary object of function, which
cannot be moved

e prvalue (pure rvalue) - expression, which initializes an object

e glvalue (generalized Ivalue) groups Ivalue and xvalue. glvalue has address in memory (has
identity) and thus usually can be assigned a value (if it is not const)

¢ rvalue groups prvalue and xvalue. rvalue can be either moved (xvalue) or does not belong
to an existing object at all (prvalue). rvalue can be passed to move constructors, move
assignment operators or move functions

References

Has identity? Can safely be moved from?

v v

glvalue rvalue

75 | 194

eferences
glvalue rvalue C;/t:::ry Meaning Example Code
T x3; class C {T x3}; x=T();
variable or data member
T& x=y; x=T1();
Ivalue reference
NO Ivalue Has identity and named rvalue reference T&& =T x=TO5
cannot be moved . .
function call or operator with T return T& F(O); TO=TQO;
YES type
assignment and compound assignment (x=1)=2; (x+=1)=2;
expr.
pre-increment, pre-decrement operator (++x)=1; (--x)=1;
indirection operator (xx)=1;
subscript operator (except if x is array x[1]=2;
rvalue)
cast to Ivalue reference static_cast<T&> (x)=T();
function call or operator with T return T&& f(); stdiimove(...);
xvalue Has identity and type
can be moved from Subscript operator or array rvalue x[17;
cast to rvalue reference static_cast<T&&> (x);
non-static data member of type T of
rvalue object
YES literal 13, false, nullptr, ’a’
function call or operator with T return T (O3
type
NO prvalue Has no identity E;st—mcrement, post-decrement opera- X+t
arithmetic expression X+y; x%y; x&y; x<<yj
logical expression x&&y 5 x[Ty; 1x;
comparison expression X<y; X==y; X>=y;
address of expression &X 3
lambda expression [TGnt a){return axa;}

| 194

References

[-value r-value

® has a name 4
e all variables are l-values o
® can be assigned values °
® some expressions return |-value o
e |-value persists beyond expressions °

e functions that return by reference return °
l-value

o reference to |-value is call Ivalue reference °
® has an address

® can appears on the left side of
assignment

does not have a name

is a temporary value without name
can not be assigned values

some expressions return r-value
does not persists beyond expressions

functions that return by value return
r-value

reference to r-value is called rvalue
reference

can be a literal constant

77 | 194

References

Named rvalue reference is lvalue (see the previous table)?

Listing 46: rvalue example

IF-IT-HAS-A-NAME rule

#define __PRINT__ cout << __PRETTY_FUNCTION__ << endl;
Things that are declared as rvalue reference can
class Foo
e be Ivalues or rvalues. The distinguishing crite-
public: . . . =
Foo() { __PRINT__ } rion is: if it has a name, then it is an lvalue.
Foo(const Foo& other) { __PRINT__ }) L.
Foo(Foo&& other) noexcept { __PRINT__ } Otherw|se, |t IS an rvalue_
~Foo() { __PRINT__ }
};
::Foo ()
// Foo(const Foo& other) 1is called, because x is lvalue. ::Foo(const Foo &)
void t_mO(Foo&& x) { Foo y = x; } ::~Foo ()

Foo&& t_m1() { return std::move(Foo()); }

int main(int, charxx)
{
Foo tmp;
t_mO(std::move(tmp));
cout << endl;
// Finally, Foo(Foo&& other) 1is called
Foo b = t_ml();
return 0;

78 | 194

std::move(. ..) |||||

std::move(...) does not move anything somewhere!

It is declared as an rvalue reference and does not have a name. Hence, it is an rvalue. Thus,
std::move “turns its argument into an rvalue even if it isn't,” and it achieves that by “hiding the
name.”

Listing 47: std::move() example

class Bar : public Foo

public:
//Bar (Bar&& other) noexcept : Foo(other) { } // WRONG: other is lvalue -> Foo(const Foo& other) is called
Bar (Bar&& other) noexcept : Foo(std::move(other)) { } // OK: Foo(Foo&& other) is called

};

79 | 194

Working with Resources

Working with Resources

RAII - “Resource Acquisition Is Initialization.”

HOWEVER, the slogan is about initialization, but its real meaning is about cleanup — freeing

all resources, preventing memory leaks, and providing exception safety.

Listing 48: Unsafe code

Listing 49: Safe code

void someMethod()
{
try
{
int *ptr = new int[123];
throw std::runtime_error("Some error");
delete[] ptr; // this will never happen
catch (const std::exception& e)
cout << "Exception: " << e.what() << endl;
}
}

Stack unwinding: For every local scope between throw and
try, the runtime invokes destructors of all local variables in

that scope, see the cppreference for more details ——— >

80 | 194

struct RAII

{
RAII(int* _ptr) : ptr(_ptr) {}
~RAII() { delete[] ptr; ptr=nullptr; }
int *ptr;
1
void someMethod()
{
try
{
RAII x = new int[123];
throw std::runtime_error("Some error");
// Stack unwinding in runtime calls ~RAII()
catch (const std::exception& e)
cout << "Exception: " << e.what() << endl;
}
}

https://en.cppreference.com/w/cpp/language/throw

RAIl - Foo class |||||

NEW PROBLEM:

Listing 50: Foo - variant A

class Foo Inner data remains in memory af-
[{)ublic: ter default destructor is called —
Foo() : size{0}, ptr{nullptr} {}
void pushBack(int value) memory leak
{

int *tmp = new int[size+1];
std::copy(ptr, ptr+size, tmp);
delete[] ptr;

ptr = tmp;

ptrlsize++] = value;

}

private:
int *ptr;
size_t size;

5
void t_Foo()

Foo xj
x.pushBack(1);
} // default destructor is called -> memory leak

81| 194

Working with Resources

- . NEW PROBLEM:
Listing 51: Foo - variant B
class Foo Double freeing

{

public:
Foo() : size{0}, ptr{nullptr} {}
void pushBack(int value)

int xtmp = new int[size+l1];
std::copy(ptr, ptr+size, tmp);
delete[] ptr;

ptr = tmp;

ptrsize++] = value;

}
~Foo() { delete[] ptr; }

private:
int *ptr;
size_t size;
};
void t_Foo()
{
Foo x;
x.pushBack(1) ;
{
Foo y = x; // default copy constructor is called -> ptr is also coppied
// destructor is called on y -> ptr is deleted -> x.ptr data
// was deleted as well
} // Error in destructing, x.ptr already deleted !!

82 | 194

Working with Resources

Listing 52: Foo - variant C

class Foo

public:
Foo() : size{0}, ptr{nullptr} {}
Foo(const Foo& other)
{
ptr = new int[other.size];
size = other.size;

void pushBack(int value)

{
int *xtmp = new int[size+l];
std::copy(ptr, ptr+size, tmp);
delete[] ptr;
ptr = tmp;
ptrsize++] = value;

}
~Foo() { delete[] ptr; }
private:

int *ptr;
size_t size;

NEW PROBLEM:

Copy constructor solves previous prob-
lem, but copy assignment remains unre-
solved.

std::copy(other.ptr, other.ptr + other.size, ptr);

void t_Foo()

Foo x;
x.pushBack(1);
{

Foo y = x; // OK because of Copy <

constructor
}
{
Foo y;
y = X3 // PROBLEM: Default copy <>
assignment operator is called!!!
}

83 | 194

Working with Resources

Listing 53: Foo - variant D - implementing copy assignment operator

// Foo& operator=(const Foo& other)

/14
// if (this == &other) return *this; // Checks self-assignment
// delete[] ptr; // delete possible previous data

// ptr = new int[other.size];

// size = other.size;

// std::copy(other.ptr, other.ptr + other.size, ptr);
// return xthis;

Foo& operator=(const Foo& other)

Foo tmp{other}; // Initialization, copy constructor is called. Self-copy can not occure
std::swap(this->size, tmp.size);

std::swap(this->ptr, tmp.ptr);

return *this;

}

The first copy assignment operator is not recommended because of:

e Self-assignment test must be done! This prevent self-copy assignment leading to deletion
of inner data (ptr).

84 | 194

Working with Resources

® There are better ways how to write this. Sometimes it can be useful move data rather
than to make a copy.

85 | 194

The Rule of Three |||||

If your class directly manages some kind of resource (such as a new'ed pointer), then you
almost certainly need to hand-write three special member functions:

® A destructor to free the resource.
® A copy constructor to copy the resource.

® A copy assignment operator to free the left-hand resource and copy the right-hand one

86 | 194

The Rule of Zero |||||

If your class does not directly manage any resource (uses library components such as vector,
string, ...) then you should strive to write no special member functions. Default them alll

e |et the compiler implicitly generate a defaulted destructor.
® Let the compiler generate the copy constructor.

® Let the compiler generate the copy assignment operator.
Explicitly defaulting your special members can help your code to be self-documenting.
@ See more details on “delete” and “default” keywords in [1] page(s) 293.
@ See more details on RAIl in [1] page(s) 874.

87 | 194

RAIl - Foo class - Let's Continue |||||

WHAT'S NEW:

Listing 54: Foo - variant E

Foo(const Foo& other)

//This will be improved later!!!

ptr = new int[other.size];

size = other.size;

std::copy(other.ptr, other.ptr + other.size,

Foo(Foo&& other) noexcept

ptr = std::exchange(other.ptr, nullptr);
size = std::exchange(other.size, 0);

ptr);

Move constructor was created that
can “replace” slow copy constructor
in some cases.
When you write your own move con-
structor, write move assignment op-
erator as well.

}
b o, SO (ES Feel G Remember rvalue references and
{ ..
Foo tmp{other}; Std"move()
std::swap(this->size, tmp.size);
std::swap(this->ptr, tmp.ptr);
return *this;
}

Foo& operator=(Foo&& other) noexcept

Foo tmp{std::move(other)};
std::swap(this->size, tmp.size);
std::swap(this->ptr, tmp.ptr);
return *this;

}

88 | 194

The Rule of Five |||||

If your class directly manages some kind of resource (such as a new'ed pointer), then you may
need to hand-write five special member functions for correctness and performance:

e A destructor to free the resource.

® A copy constructor to copy the resource.

® A copy assignment operator to free the left-hand resource and copy the right-hand one
® A moveconstructor to transfer ownership of the resource

* A move assignment operator to free the left-hand resource and transfer ownership of the
right-hand one

But sometimes, you must write a by-value assignment operator to free the left-hand resource
and transfer ownership of the right-hand one (aka some STL containers.).

Our Foo class will be improved by smart pointers in some upcoming lectures!!!

89 | 194

More on Classes

More on Classes

What should we already know? |||||

In the following slides, more details on classes will be provided. Till now, you should be familiar
with class layouts, operators needed to access members of classes (::, .), implicit member
functions parameter (this), basic principles of references (Ivalue ref., rvalue ref.) and their

usage in copy/move constructors and assignment operators.

90 | 194

More on Classes

Constructors, Destructors |||||

Constructors Destructors

® have a class name and no return type. * have a class name prefixed by tilde (~).

® are used to instantiation. ® are parameterless

® are invoked automatically during ® are used to “destroy” instance.
instantiation. ® are automatically called when program

® can be overloaded. finished execution, when a scope (the

® can be created by compiler. {...} parenthesis) containing local

® can have some other features: default, \c/:IrIiscli)Ie ends, or when delete operator is

deleted, parameter/parameterless,
copy/move, explicit

® can be delegated.

® can be called with respect to inheritance.

91 | 194

More on Classes

Default Constructor

is a constructor with no arguments. This constructor can be generated by compiler if no other
user-defined constructor exists!

|class Foo{};

// Empty class, compiler generates public default constructor ‘

class Foo

{
public:
Foo() = default;

5

// Explicitly defaulted constructor

class Foo
{
public:

};

Foo(int _x = 0) {};

// User-defined default constructor

92 | 194

More on Classes

Sometimes it is useful to mark a constructor as deleted (by using delete keyword) to prevent
calling the constructor, or to guide programmer to use another constructor.

|class Foo

[{

| public:

| Foo() = delete; // Explicitly deleted constructor
| Foo(int _x) {}

[33

If possible, initialize class data members before constructor’s body is called. Remember
member initialization (Lecture Notes 02).

|class Foo

[{

| public:

\ Foo() : x{0}, s{""} {}; // Default constructor that initializes data memebrs
private:

} int x;

| std::string s;

155

93 | 194

More on Classes

Parametrized Constructors, Delegating Constructors |||||

Parametrized constructor accepts one or more arguments/parameters. It is never generated by
compiler and blocks generating of the default constructor by compiler.

Delegating is a process when a constructor calls another constructor of the class.

Listing 55: Delegating constructors Layout Listing 56: ... and usage
class Foo void t_delegating()
public: // Stack, automatic storage, constructor is called
Foo(int _x, int _y) : x{_x}, y{_y} { __PRINT__ } Foo a;
// Stack, automatic storage, constructor is called
// Delegating constructor Foo b{1,2};
Foo(int _x) : Foo(_x,0) { __PRINT__ } 3 // two destructors are called (for a and b)

// Delegating constructor
Foo() : Foo(@) { __PRINT__ }

::Foo(int, int)

::Foo(int)
~Foo() { __PRINT__ } ::Foo()
private: ::Foo(int, int)
int x; ::~Foo()
int y; ::~Foo()
};

94 | 194

Converting Constructors, Explicit Constructors |||||

Converting Constructors
e Constructor that is not declared with explicit specifier is called converting constructor.

e |f a class has a constructor which can be called with argument, then this constructor
becomes conversion constructor because such a constructor allows conversion of the single
argument to the class being constructed.

® converting constructor can be used for implicit conversions.
Explicit Constructors

e Explicit constructor is constructor that cannot be used for performing implicit conversions
or copy initialization.

e Prefixing constructor declaration with explicit keyword makes constructor explicit.

® The explicit keyword is an optional decoration for constructors that take exactly one
argument. It only applies to single-argument constructors since those are the only
constructors that can be used in type casting.

95 | 194

More on Classes

Listing 57: Example on Converting constructors - see explicit in Bar class

class Foo

{
public:

Foo(int x) {}
15

class Bar
{
public:
explicit Bar(int x) {} // explicit constructor -> implicit conversion is not allowed

};

void fnFoo(Foo x) {}
void fnBar(Bar x) {}

Listing 58: ... calling constructors

void t_explicit()

Foo a(123); // OK: Normal call of Foo::Foo(int)

Foo b = 123; // OK: Implicit conversion calls Foo::Foo(int)
fnFoo(123); // OK: Implicit call of Foo::Foo(int)

fnFoo((Foo)123); // OK: Explicit call of Foo::Foo(int)

Bar c(123); // OK: Normal call of Bar::Bar(int)

//Bar d = 123; // Compile-time error, implicit conversion is not allowed
//fnBar(123); // Compile-time error, implicit conversion is not allowed
fnBar ((Bar)123); // OK: Explicit call of Bar::Bar(int)

fnBar (static_cast<Bar>(123)); // OK: Explicit call of Bar::Bar(int)

}

96 | 194

More on Classes

Copying vs Moving |||||

@ See more details on Copy and Move constructors in [1] page(s) 248-266.

Copying propagates the value of the source object to the destination object without modifying
the source object— “other” is const!

Foo(const Foo& other){}

Moving propagates the value of the source object to the destination object and is permitted to
modify the source object — “other” is not const!
Foo(Foo&& other) {}

Moving is always at least as efficient as copying, and for many types, moving is more efficient
than copying.

AR

Constructors

Listing 59: Copy and Move Constructors

More on Classes

Assignment Operators

Listing 60: Copy and Move Assignment Operators

//Copy constructor
Foo(const Foo& other)

//This will be improved later using smart <
pointers!!!
ptr = new int[other.size];
size = other.size;
std::copy(other.ptr,
other.ptr + other.size,
ptr);
}

//Move constructor

Foo(Foo&& other) noexcept :
ptr{std::exchange(other.ptr, nullptr)},
size{std::exchange(other.size, 0)}

{3

//Copy assignment operator
Foo& operator=(const Foo& other)

Foo tmp{other};
std::swap(this->size, tmp.size);
std: :swap(this->ptr, tmp.ptr);
return *this;

}

//Move assignment operator
Foo& operator=(Foo&& other) noexcept

Foo tmp{std::move(other)};
std::swap(this->size, tmp.size);
std::swap(this->ptr, tmp.ptr);
return xthis;

}

98 | 194

The use of tmp variable prevents from self-

assignment 1!

More on Classes

Remember the Rule of Zero |||||
Listing 61: “Full” class implementation Listing 62: “RoZ" class implementation
class Foo class Bar
{ {
public: public:

Foo() : s{"test"} {} Bar() : s{"test"} {}

Foo(const Foo& other) : s{other.s} {} Bar (const Bar& other) = default;

Foo(Foo&& other) noexcept : s{std::exchange(other.s,«+> Bar (Bar&& other) noexcept = default;

"y} {3 ~Bar() = default;
~Foo() {}
Foo& operator=(const Foo& other) Bar& operator=(const Bar& other) = default;

Bar& operator=(Bar&& other) noexcept = default;
//if (this == &other) return *this;

Foo tmp{other}; static Bar getBar() { return Bar(); }
std::swap(s, tmp.s); private:
return *this; std::string s;
! s
Foo& operator=(Foo&& other) noexcept
//if (this == &other) return xthis; . .
Foo tmp{std: :move(other)}; Defaulting (using default keyword) was used to
std::swap(s, tmp.s); " "
e g 20 make code more “self-documented”. All rows
} - . o " .
static Foo getFoo() { __PRINT__ return Foo(); } containing the “default” keyword can be omit-
ivate: . . .
P S tdt 1string s ted, but this behavior can be compiler depen-
b dent.

99 | 194

More on Classes

Listing 63: Using Bar class (the same for Foo) - see the comments
void t_Bar()

Bar a; // initialization, default constructor 1is called
Bar b = a; // initialization, copy constructor is called

Bar c; // initialization, default constructor is called
c = a; // assignment, copy assignment operator is called
c = std::move(b); // assignment, move assignment operator is called,

// b lost ownership of the data

Bar d(a); // initialization, copy constructor is called
Bar e = std::move(a); // initialization, move constructor is called
// a lost ownership of the data

Bar f(std::move(e)); // initialization, move constructor is called
// e lost ownership of the data

Bar g = Bar::getBar(); // copy elision -> only one call of default constructor is called
Bar h = Bar(Bar(Bar::getBar())); // copy elision -> only one call of default constructor 1is called
Bar *i= new Bar(); // Creating instance on heap

delete i,

}

Dynamic allocation is here — see new and delete keywords. Smart pointer will be used later
instead of this.
New term Copy elision will be discussed on following slides!

100 | 194

Copy Elision

Copy Elision

Copy Elision

The compiler is allowed to elide copies where results are “as if”” copies were made.

Return Value Optimization (RVO) is one such instance.

e Caller allocates space on stack for return value, and passes the address to callee.

e (Callee constructs result directly in that space.

Listing 64: Example on Copy Elision

using std::string;
string foo()
{
string a{"Hello"};
int b{123};
return a;

}

void bar()
{

}

string x{foo()};

How many parameters are passed to the foo
function? — ONE !l

The foo function is passed the address where
the result should be written!

101 | 194

Returning Values — Unoptimized Version |||||

stack frames

o - ¢ Calling bar() creates a new stact frame.
Listing 65: Example on Copy Elision

using std::string;
string foo()

string a{"Hello"};
int b{123};

return aj;
}
locals
void bar() X:
{
string x{foo()};
¥ parameters
bar()

102 | 194

Returning Values — Unoptimized Version |||||

Listing 65: Example on Copy Elision

stack frames

using std::string;
string foo()

string a{"Hello"};
int b{123};

return aj;
}
void bar()
{
string x{foo()};
}

locals

b:

a:
parameters
5

foo()

locals
X:

parameters

bar()

e Calling bar() creates a new stact frame.

e Calling foo() creates a new stack frame.

102 | 194

Returning Values — Unoptimized Version |||||

Listing 65: Example on Copy Elision

stack frames

using std::string;
string foo()

string a{"Hello"};

int b{123};
return aj;
}
void bar()
{
string x{foo()};
}

locals

b:

a:
parameters
&X

foo()

locals
X:

parameters

bar()

e Calling bar() creates a new stact frame.
e Calling foo() creates a new stack frame.

e Address of x is passed as a parameter to
foo().

102 | 194

Returning Values — Unoptimized Version |||||

stack frames

locals
o N b: 123 ¢ Calling bar() creates a new stact frame.
Listing 65: Example on Copy Elision a: “Hello”
using std::string; e Calling foo() creates a new stack frame.
‘ parameters
Sl &x e Address of x is passed as a parameter to
string a{"Hello"};
int b{123}; foo() fOO().
return aj; . .
) e foo() is populating a and b local values.
locals
void bar() X:
{
string x{foo()};
¥ parameters
bar()

102 | 194

Returning Values — Unoptimized Version |||||

stack frames

locals
o N b: 123 ¢ Calling bar() creates a new stact frame.
Listing 65: Example on Copy Elision a: “Hello”
using std::string; e Calling foo() creates a new stack frame.
‘ parameters
=7y R0 &x e Address of x is passed as a parameter to
string a{"Hello"};
e b foo() foo().
return aj; . .
) — ® foo() is populating a and b local values.
\{/o‘id BErr(O) x: “Hello” \/ ® a3 is copied after return statement -> x is
string x{foo()}; Set[
’ parameters
bar()

102 | 194

Copy Elision

Returning Values — Unoptimized Version

Listing 65: Example on Copy Elision

using std::string;
string foo()

string a{"Hello"};

int b{123};
return aj;

}

void bar()

{
string x{foo()};

}

stack frames

locals
x: “Hello”

parameters

bar()

Calling bar() creates a new stact frame.
Calling foo() creates a new stack frame.

Address of x is passed as a parameter to

foo().
foo() is populating a and b local values.

a is copied after return statement -> x is
set!

foo() stack frame is destroyed.

102 | 194

Copy Elision - Return Value Optimization |||||

stack frames

e Calling bar() creates a new stack frame.
Listing 66: Example on Copy Elision

using std::string;
string foo()

string a{"Hello"};
int b{123};

return aj;
}
locals
void bar() X:
{
string x{foo()};
¥ parameters
bar()

103 | 194

Copy Elision - Return Value Optimization |||||

stack frames

locals .
b: e Calling bar() creates a new stack frame.
Listing 66: E le on Copy Elisi ' .
P * Calling foo() creates a new stack frame.
. parameters But, no memory is allocated for a!
string foo() 2
; .
string a{"Hello"};
int b{123}; foo()
return aj;
}
locals
void bar() X:
{
string x{foo()};
¥ parameters
bar()

103 | 194

Copy Elision - Return Value Optimization |||||

stack frames

locals .
b: e Calling bar() creates a new stack frame.
Listing 66: E I Copy Elsi ’ .
e — Calling foo() creates a new stack frame.
using std::string; K
, parameters But, no memory is allocated for a!
string foo() &X
g string a{"Hello"}; f00() e Address of x is passed as a parameter to
int b{123}; f
return a; OO().
’ locals
void bar() X
{
string x{foo()};
’ parameters
bar()

103 | 194

Copy Elision

Copy Elision - Return Value Optimization

stack frames

locals °
b: 123
Listing 66: Example on Copy Elision °
using std::string;
parameters
string foo() &X
{
. [J
string a{"Hello"};
int b{123}; fOO()
return aj;
}
locals °
void bar() X: “Hello”
{
string x{foo()};
¥ parameters
bar()

Calling bar() creates a new stack frame.

Calling foo() creates a new stack frame.
But, no memory is allocated for a!

Address of x is passed as a parameter to

foo().

foo() is populating a and b values. But
the value of a is written directly in &x
address.

103 | 194

Copy Elision

Copy Elision - Return Value Optimization

Listing 66: Example on Copy Elision

using std::string;
string foo()

string a{"Hello"};

int b{123};
return aj;

}

void bar()

{
string x{foo()};

}

stack frames

°
°
[]
locals °
x: “Hello”
parameters
[]
bar()

Calling bar() creates a new stack frame.

Calling foo() creates a new stack frame.
But, no memory is allocated for a!
Address of x is passed as a parameter to
foo().

foo() is populating a and b values. But
the value of a is written directly in &x
address.

foo() stack frame is destroyed.

103 | 194

Copy Elision - NO Return Value Optimization |||||

Listing 67: Here RVO can not be applied.

using std::string;
string foo()
{
string a{"Hello"};
String aa{Merrerie; In some cases, RVO can not be used because the return
address can not be assigned for sure.

return (std::rand() > 123) ? a : aa;

}
void bar ()
{
string x{foo()};
}

104194

Pass-By-Value Copy Elision |||||

Passing temporaries by value is another opportunity to apply copy elision. Pass-by-value implies
callee can change its copy of the argument without being observed by caller.

e Caller allocates space for callee’s by-value parameter on stack.
® Any lvalue arguments get copied into that space (— no elision happens).

e Any rvalue arguments are simply constructed in that space to begin with.

Listing 68: Example on Pass-by-Value Copy Elision

void foo(string a)

int b{123};
return;

}
void bar ()
{

foo(string("Hello"));

S Here, string{"Hello"} is rvalue.
}

105 | 194

Copy Elision

stack frames

Listing 69: _Example on Pass-by- ¢ Calling bar() creates a new stack frame.
Value Copy Elision

void foo(string a)

int b{123};

return;
}
\Eoﬁd bar () locals
foo(string("Hello")); X:
int x;
}
parameters
bar()

106 | 194

Copy Elision

stack frames

locals
b:
Listing 69: Example on Pass-by- e Calling bar() creates a new stack frame.
Value Copy Elision
FO] Z AT) 2?(?425;?5 * Calling foo() creates a new stack frame.
iztutrnf‘}zs}; fo;)() Memory for a temporary parameter is
¥ allocated on that stack frame! Moreover,
void bar () locals no memory for “a” is allocated.
foo(string("Hello")); X
int x;
}
parameters
bar()

106 | 194

Copy Elision

stack frames

locals
b: 123
Listing 69: _Example on Pass-by- ¢ Calling bar() creates a new stack frame.
Value Copy Elision
void foo(string a) 2?(?_:25;?5 * Calling foo() creates a new stack frame.
e e fo;)() Memory for a temporary parameter is
¥ allocated on that stack frame! Moreover,
i) L) locals no memory for “a” is allocated.
footirneietton)s X: e foo() is populating b value.
}
parameters
bar()

106 | 194

Copy Elision

stack frames

Listing 69: _Example on Pass-by- ¢ Calling bar() creates a new stack frame.
Value Copy Elision
ot el =) ¢ Calling foo() creates a new stack frame.
e e Memory for a temporary parameter is
} allocated on that stack frame! Moreover,
void bar(locals no memory for “a” is allocated.
footirneietton)s X: e foo() is populating b value.
} .
parameters ¢ foo() stack frame is destroyed.
bar()

106 | 194

Copy Elision

Copy Elision - Back to Class Initializations |||||

Listing 70: Example on Pass-by-Value Copy Elision

class Bar

{
public:
Bar() : s{"test"} {}
Bar (const Bar& other) = default;
Bar (Bar&& other) noexcept = default;
~Bar() = default;

Bar& operator=(const Bar& other) = default;
Bar& operator=(Bar&& other) noexcept = default;

Copy Elision ensures, that constructor is called
static Bar getBar() { return Bar(); }

private: only once on each row of t_test() method.
std::string s; _
e

void t_test()

Bar g = Bar::getBar(); // copy elision «+
-> only one call to default constructor is <+
called

Bar h = Bar(Bar(Bar::getBar())); // copy elision «+
-> only one call to default constructor is <«
called

107 | 194

Inheritance

Inheritance

What should we already know? |||||

Inheritance in C++ has similar features as in C# or Java. But there are also some differences

that must be taken into account

Inheritance and all its aspects are well described in our reference presentation. That is why we
will focus on key features only.

@ See the basic description of inheritance in [1] page(s) 463-491.

108 | 194

Quiz !

After reading referenced slides, you should be able to answer at least the following questions?
@ What is the syntax to define a derived class from a base class?
® What is the difference between hiding and overriding?
® Does interface have the same meaning as in C#7
@ Does C++ support multiple inheritance?

® What is called class hierarchy and how can be represented?

109 | 194

Inheritance

Public Inheritance |||||
Listing 71: Base Class Example Listing 72: Example of Derived Class - see the comments
class BaseClass class DerivedClassA : public BaseClass
public: // f remains PUCLIC

BaseClass() : m_data{1} {} // g remains PROTECTED

// m_data is not accessible

public: public:

void f() {} void m()
protected: {

void g() {} O3 // OK
private: g(); // OK

int m_data; //m_data = 123; // Not accessible
}; }

};
. void t_publicInheritance()
: public {
. . . DerivedClassA a;
Public inheritance is the most a.f0); /] ok
. . . //a.g(); // Not accessible, is PROTECTED
common form of inheritance in OOP. L ¢
}

110 | 194

Inheritance

Protected Inheritance |||||
Listing 73: Base Class Example Listing 74: Example of Derived Class - see the comments
class BaseClass class DerivedClassB : protected BaseClass
{ {
public: // f became PROTECTED

BaseClass() : m_data{1} {} // g remains PROTECTED

// m_data is not accessible

public: public:

void f() {} void m()
protected: {

void g() {} LOH // OK
private: g(); // OK

int m_data; //m_data = 123; // Not accessible
15 }

15
void t_protectedInheritance()
. protected
. . . DerivedClassB b;

Inheritance relationship only seen by /] b.f0); // Not accessible, it is PROTECTED

. . . b.g(); Not ible, it is PROTECTED
derived classes and their friends and é{mo?() [/ ok mecessbte, e s
class itself and its friends. ’

111 | 194

Inheritance

Private Inheritance |||||
Listing 75: Base Class Example Listing 76: Example of Derived Class - see the comments
class BaseClass class DerivedClassC : private BaseClass
public: // f became PRIVATE

BaseClass() : m_data{1} {} // g became PRIVATE

// m_data is not accessible

public: public:

void f() {} void m()
protected: {

void g() {} LOX // 0K
private: 20 // OK

int m_data; //m_data = 123; // Not accessible
}; }

}s

. void t_privateInheritance()

. private {
. . . DerivedClassC c;
Inheritance relationship only seen by /] c.fO)s // Not accessible, it 4s PRIVATE
. . . // c.g(); // Not accessible, it is PRIVATE

class itself and its friends (not LS
derived classes and their friends). !

112 | 194

Inheritance

Inheritance and Constructors |||||

® By de{:aUIty constructors not Listing 77: Inheritance and Constructors - see the comments

inherited. class Base

{
. . public:
® Special constructors (i.e., ase) a0, yOH O
Base(int _x, 1int _y) : x{_x}, y{_y
default, copy, and move private:
constructors) cannot be by 0

class Derived : public Base

inherited, as well as copy/move

// default Base() constructor is not inherited !!!

aSSIgnment operators // ‘inherit non-special constructors from Base
. using Base::Base;
® |n SpeClaI cases, base CIaSS // default public constructor Derived() is implicitly declared
using Base::operator=;
constructors/operators can be public:
reused in derived classes. This veld 2?8

can be done by using statement. '’}
They may still be hidden in P SRR
Derived do; // calls Derived::Derived()

deered CIaSS. Derived di1{1,2}; // calls Base::Base(int,int)
}

113 | 194

Inheritance

Inheritance Issues

Single Multiple Multilevel Hierarchical Diamond problem
A B Cc A A A
+ foo(): void + foo(): void + foo(): void + foo(): void + foo(): void + foo(): void
B B Cc B Cc
+ foo(): void + foo(): void + foo(): void + foo(): void + foo(): void + foo(): void + foo(): void
[+ D
+ foo(): void + foo(): void

To solve problems related to inheritance, it is necessary to become acquainted with upcasting,
downcasting, hiding, overloading, overriding, and virtual calling.

114 | 194

Upcasting and Downcasting

Upcasting and Downcasting

Casting |||||

Generally, C++ provides C-style casting, static_cast, dynamic_cast, reinterpret cast, and
const_cast. This will be discussed later. For now, the following facts help us to understand
upcasting and downcasting.

® static cast is performed at compile-time. The compiler perform a check: “Could the input
be cast to the output?”’ This is can be used for cases where you are casting up or down an
inheritance hierarchy of pointers (or references). But the check is only at compile time,
and the compiler assumes you know what you are doing.

e dynamic cast is performed at run-time. It can only be used in the case of a pointer or
reference cast, and in addition to the compile time check, it does an additional run time
check that the cast is legal. It requires that the class in question have at least one virtual
method, which allows the compiler (if it supports run-time type information - RTTI) to
perform this additional check. However, if the type in question does not have any virtual
methods, then it cannot be used! You need at least one virtual method in a class for RTTI
to successfully apply dynamic cast operator!

115 | 194

Upcasting |||||

Upcasting is converting derived-class pointer or reference to base-class pointer or reference.

® |s always safe — always ends in a valid type. Derived-class instance is always a base-class
instance, in other words, derived-class object has always a base-class subobject.

® No explicit type-cast is needed.

Listing 78: Base and Derived Class

class BaseClass
{
public:

int x = 03

15

class DerivedClass : public BaseClass

{
public:

int y = 03
};

116 | 194

Upcasting and Downcasting

Listing 79: Upcasting examples - see the comments

void t_upcasting()
{
BaseClass b;
b.x = 123;
DerivedClass d;
d.y = 456; // d.x remains 0
BaseClass* pb = nullptr;
DerivedClassx pd = &d; // pointer to Derivedclass
pb = &d; // OK, no cast is required
pb = pd; // OK, no cast is required
pb = static_cast<BaseClassx>(pd); // OK, upcasting pointer
BaseClass& rB = d; // OK, getting l-value reference, no cast is required
//BaseClass&& rrB = d; // ERROR, this is not working
BaseClass&& rrB = std::move(d); // OK, getting r-value reference, no cast is required
rrB = BaseClass(); // OK, getting r-value reference
rrB = DerivedClass(); // OK, getting r-value reference to derived class
rrB = static_cast<BaseClass&&>(b); // OK, casting l-value to r-value reference
rrB = static_cast<BaseClass&&>(d); // OK, upcasting l-value to r-value reference
}

117 | 194

Downcasting |||||

Downcasting is converting base-class pointer or reference to derived-class pointer or reference.
e |t forces base-class object to be treated as derived-class object.
® |s not always safe — not every base-class object is also derived-class object

® |t requires explicit cast — static cast or dynamic cast, or C-style casting.

Listing 80: Base and Derived Class

class BaseClass

public:
virtual void bcMethod() {} // This makes Baseclass polymorphic !!!
int x = 03
};
class DerivedClass : public BaseClass
{
public:
void dcMethodOnly();
int y = 03
};

118 | 194

Upcasting and Downcasting

Listing 81: Downcasting

void t_downcasting()

{
BaseClass b;
b.x = 123;
DerivedClass d;
d.y = 456; // d.x remains @
BaseClass* pb = &b; // pointer to Baseclass

DerivedClass* pd = nullptr;

// OK in minor cases. Generally, Baseclass may lack Derivedclass methods.
// It means that those methods can not be called on pd->... !!!
pd = static_cast<DerivedClassx>(pb);

//cout << pd->y << endl; // What is the value?

//pd->dcMethodOnly () ; // Uncomment code -> undefined symbol error -> SLICING

pd = dynamic_cast<DerivedClassx>(pb); // OK on polymorphic classes only!!!

if (pd == nullptr) // But realtime casting leads to nullptr!
cout << "Whops, something is wrong" << endl;

/] pd = &b; // ERROR

pd = (DerivedClassx)pb; // OK, C-style downcast

pb = &d; // CHANGE. pointer to Derivedclass

pd = static_cast<DerivedClass*>(pb); // OK, but you must know what are you doing

pd = dynamic_cast<DerivedClassx*>(pb); // OK on polymorphic classes only!!!

if (pd == nullptr) // pd != nullptr

cout << "Whops, something is wrong" << endl; // NO OUTPUT pd != nullptr

119 | 194

Upcasting and Downcasting

// DerivedClass& rD = b; // NOT VALID
// DerivedClass&& rrD = std::move(b); // NOT VALID

DerivedClass& rD = static_cast<DerivedClass&>(b); // OK, but you must know what are you doing
rD = dynamic_cast<DerivedClass&>(b); // ERROR: runtime check fails because of BAD_CAST!

@ See more details on slicing in [1] page(s) 497.

@ See more details on bad cast on GeeksForGeeks.

120 | 194

https://www.geeksforgeeks.org/typeinfobad_cast-in-c-with-examples/

Hiding and Overloading

Hiding Members in Derived Classes |||||

Listing 82: Using, overloading

//use __FUNCSIG__ on MVCS
#define __PRINT__ cout << _PRETTY_FUNCTION__ << endl;

class BaseClass

{
public:

void foo(int i) const { __PRINT__ }
};

hiding is providing new versions of
. . . class DerivedClass : public BaseClass
member functions in a derived class || N
TR .. . public:
to “hide” original functions of the Vo e) e £ HR D

base class. ¥

Listing 83: test - see the comments
void t_test()

{
BaseClass b;
b.foo(1); // BaseClass::foo(int)
DerivedClass d;
d.foo(1); // DerivedClass::foo(int)
}

121 | 194

Bringing Members into “Derived” Scope |||||

Listing 84: Using, overloading
using statement can be used to bring | //use __FUNCSIG__ on nvcs

) i #define __PRINT__ cout << __PRETTY_FUNCTION__ << endl;
base members into scope of derived

class BaseClass

class. Thus overloaded methods of {
public:
the base class can be called. void foo(int 1) const { __PRINT__ }
et H class DerivedClass : public BaseClass
This is typically used when -

overloading function members of the |Ptic:

using BaseClass::foo;

base class. E.g., foo() is overloaded . i) FERAeER:) GRS f A &
— is can accept int or float.

Listing 85: test - see the comments
void t_test()

Function and operator overloading is |«
.) . BaseClass b;
a klnd Of COmplle—tlme b.foo(1); // BaseClass::foo(int)
. DerivedClass d;
polymorphlsm. d.foo(1); // BaseClass::foo(int) !!!
d.foo(1.0f); // DerivedClass::foo(float)
}

122 | 194

Run-time polymorphism,
Virtuals

Run-time polymorphism,Virtuals

Run-time polymorphism |||||

® Polymorphism is a characteristic of being able to assign different meaning to something in
different contexts, e.g. a function of a derived-class can behave differently in comparison
to its base-class version.

® |s also called dynamic polymorphism, e.g. reference or pointer to type T refer to
“dynamic” object of type D, where D is somehow derived from T.
BaseClass *ptr = new DerivedClass();
When calling member through such pointer or reference, may want actual function invoked
to be determined by dynamic type of object referenced by pointer or reference, i.e. may
want to call ptr->m();, where m() is member of Derived class, not a BaseClass.

123 | 194

Run-time polymorphism,Virtuals
Virtuals |||||

® This is about virtual keyword applied on destructors, member functions.

® |n C++, the constructor cannot be virtual, because when a constructor of a class is
executed there is no virtual table in the memory, means no virtual pointer defined yet. So,
the constructor should always be non-virtual.

® Virtual function is member function with polymorphic behavior. When calling such
function, actual function invoked will be determined by dynamic type of referenced object.

e Virtual function is automatically virtual in all derived classes — not necessary to repeat
virtual qualifier

e Making destructor virtual ensures hierarchical calling of destructors — releasing resources.

124 | 194

Run-time polymorphism,Virtuals

override

override keyword can be used to “change” behavior of virtual function in derived class.

final

Specifies that a virtual function cannot be overridden in a derived class or that a class cannot
be inherited from.

Listing 86: Overriding function

class A
{
public:
virtual void foo() { __PRINT__ };
virtual void bar() { __PRINT__ };

};
class B : public A
{
public:
void foo() override { __PRINT__ }; // OK: B::foo overrides A::foo
void bar() final { __PRINT__ }; // OK: B::bar overrides A::bar
};
class C : public B
{
public:
void foo() override { __PRINT__ }; // OK: C::foo overrides B::foo
//void bar() override { __PRINT__ }; // ERROR: B::bar is final and can not be overriden
15

125 | 194

Run-time polymorphism,Virtuals

Listing 87: Overriding function - test

void t_test()
A a;
a.foo(); // virtual void A::foo()
a.bar(); // virtual void A::bar()
B b;
b.foo(); // virtual void B::foo()
b.bar(); // virtual void B::bar()
C c;
c.foo(); // virtual void C::foo()
c.bar(); // virtual void B::bar() !!!1t1111
A*x pA = &b;
pA->foo(); // virtual void B::foo() !!!!t!l!
pA->bar(); // virtual void B::bar() !!ilit1l
pA = &c;
pA->foo(); // virtual void C::foo() !!illlll
pA->bar(); // virtual void B::bar() !!ilittl
}

126 | 194

Run-time polymorphism,Virtuals

Pure virtual function
A pure virtual function is specified by placing “= 0" in its declaration as follows:
virtual void someFunctionName()= 0; The “= 0" tells the compiler that the function has no

body.
Abstract class
Class with one or more pure virtual functions called abstract class.
e Derived classes need not override all of its pure virtual methods.

e Class that does not override all pure virtual methods of abstract base class will also be
abstract.

127 | 194

Run-time polymorphism,Virtuals

Listing 88: Pure virtual function and abstract class

class A
{
public:
virtual void foo() = 0;
15
class B : public A
{
void foo() override; // OK: B::foo overrides A::foo
5
void t_test() { A a; } // ERROR: Can not create instance of abstract class.

@ See more on abstract classes in [1] page(s) 518-521.

128 | 194

Back to Inheritance

Back to Inheritance

Back to Inheritance

Single Multiple Multilevel Hierarchical Diamond problem
A B C A A A
+ foo(): void + foo(): void + foo(): void + foo(): void + foo(): void + foo(): void
B B C B C
+ foo(): void + foo(): void + foo(): void + foo(): void + foo(): void + foo(): void + foo(): void
[D
+ foo(): void + foo(): void

@ See more on multiple inheritance and dreaded diamond problem in [1] page(s) 531-537.

129 | 194

Smart Pointers

Smart Pointers

Introduction

@ See the basics for Smart Pointers in [1] page(s) 890-971.

In the following slides, some key features will be highlighted.

130 | 194

Smart Pointers

Pointer recap. |||||

A pointer is a low-level construct that represents the address of an object, in memory. For
instance a pointer to X, noted X*, represents the address of an object of type X. The value of
an X* therefore looks like a memory address, like 0x06af34c2.

The pointer is itself an object, and you can manipulate it in code. In particular, you can
retrieve the value of the object it points to, by dereferencing it with *, e.g. (*p)

For example, if p is a pointer of type X*, and say that p equals 0x06af34c2, then *p gives the

object of type X that is stored at 0x06af34c2. And p->abc gives the member (data or
function) abc in the object X.

131 | 194

Pros and Cons of Pointers |||||

Pros

® Basic idea behind pointers: Since a pointer is typically much smaller than an object (a
pointer contains only a memory address, which is only 32 or 64 bits tops), it is usually
cheaper to copy a pointer than to copy an object.

e Useful for dynamic memory allocation: you ask the OS for a chunk of memory to store an
object, and the OS would give an available memory address, which maps well with the
concept of a pointer.

Cons
® They can contain an invalid address.

® To make sure you don't accidentally dereference this sort of pointer, you need to check for
the nullity of pointers.

Even if you do test for null pointers, you not completely safe, e.g. pointing to 0x00000001

Managing the life cycle of this object is required.

Smart Pointers

Smart Pointers in C++11 and up |||||

All the standard smart pointers arrived together in C++11.
They basically provide automatic memory management: when a smart pointer is no longer in
use, that is when it goes out of scope, the memory it points to is deallocated automatically.

auto ptr C4++498. Deprecated since in C++11, and finally removed in C++17.
unique ptr C++11 replacement for auto ptr, C++14 adds make unique.
shared ptr adds reference-counting, C++17 adds shared ptr<T[]>.

weak ptr for “weak” references that do not increment reference counters.

A smart pointer syntactically behaves like a pointer in many way: It can be dereferenced with
operator* or operator->, that is to say you can call *sp or sp->member on it. And it is also
convertible to bool, so that it can be used in an if statement.

Traditional pointers are now also known as raw pointers. Raw pointers (*) play still an
important role in C++.

133 | 194

What is “smart™? Do you remeber RAII? |||||

The principle of RAIl is simple: wrap a resource (a pointer for instance) into an object, and
dispose of the resource in its destructor. And this is exactly what smart pointers do:

Listing 89: SmartPointer class

template <typename T>
class SmartPointer

{
public:
explicit SmartPointer(T*x _ptr) : ptr{_ptr} {}
~SmartPointer() { delete ptr; } // BUT IS THIS REALY SMART? WHAT ABOUT COPY AND TWICE DELETION!!!

T& operator*() { return *ptr; }

T* operator->() { return ptr; }
private:

T*x ptr;

};

Smart pointers must be safe from the perspective of copying, moving, and “sharing” ownership
od data (resources).
Unlike raw pointer, smart pointer owns its pointed-to memory.

134104

RAW Pointers |||||

L4 They are not smart pointers, Listing 90: RAW pointers
they are not “dumb” pointers el SOl O
either. There is still a place to int x = 123;
int *ptrA = &x;
use them. *ptrA = 456;
H const intx ptrB = &x;
® Share a IOt Wlth references bUt //*ptrB = 456; // Error. Target object is const
can be null (nullptr). intx const ptrC = &x;
. *ptrC = 456; /] OK, x=456
® raw pomters (and references) //ptrC++; // Error. Pointer is const
represent access to an object, const intx const ptrD = &x;
. //*ptrD = 456; // Error. Target object is const
but not OWnerShlp! //ptrD++; // Error. Pointer is const

135 | 194

RAW Pointers: “Pointing to Managed Object” |||||

Listing 91: RAW pointers

class SomeClass

public:
explicit SomeClass(int _x) : x{_x} {}
int x;
¥ stack heap
void t_test()
T* ptrA managed object

SomeClass *ptrA

new SomeClass(123);
ptrA; ptr. to T object > T Object
delete ptrA;

SomeClass *ptrB
ptrA = nullptr;

cout << ptrB->x << endl; // Managed object <«
does not exist
delete ptrB; // Managed object <«

does not exist
ptrB = nullptr;

136 | 194

Smart Pointers

RAW Pointers: “Pointing to Managed Object”

Listing 91: RAW pointers

class SomeClass

public:
explicit SomeClass(int _x) : x{_x} {} stack heap
int x;

¥ T* ptrA managed object

\{/o-id t_test() ptr. to T object N T Object

SomeClass *ptrA new SomeClass(123);
SomeClass *ptrB ptrA; .
delete ptrA; T ptrB

ptrA = nullptr;)
cout << ptrB->x << endl; // Managed object < ptr. to T object

does not exist

delete ptrB; // Managed object <«
does not exist

ptrB = nullptr;

136 | 194

Smart Pointers

RAW Pointers: “Pointing to Managed Object” |||||

Listing 91: RAW pointers

class SomeClass

public:
explicit SomeClass(int _x) : x{_x} {} stack heap
int x;

¥ * ptrA mangged gpject
N/
_—>
{ R

SomeClass *ptrA new SomeClass(123);
SomeClass *ptrB ptrA; .
delete ptrA; T ptrB

ptrA = nullptr;)
cout << ptrB->x << endl; // Managed object < ptr. to T object

does not exist

delete ptrB; // Managed object <«
does not exist

ptrB = nullptr;

136 | 194

Smart Pointers

RAW Pointers: “Pointing to Managed Object” |||||

Listing 91: RAW pointers

class SomeClass

public:
explicit SomeClass(int _x) : x{_x} {} stack heap
int x;

15

void t_test()

SomeClass *ptrA = new SomeClass(123); n
SomeClass *ptrB = ptrA;
delete ptrA; T* ptrB
ptrA = nullptr;
cout << ptrB->x << endl; // Managed object <«
does not exist
delete ptrB; // Managed object <«

does not exist
ptrB = nullptr;

136 | 194

Smart Pointers

Unique Pointer |||||

std::unique ptr is smart pointer that retains exclusive ownership of object through pointer.

® is movable — move operation transfers ownership — two unique ptr can not own the
same object

® is not copyable — this prevent from creating another unique ptr that could share object

® make unique is used to create unique ptr object because of exception safety reasons.
® Destructor destroys managed object (if any)

® operator= assigns unique ptr

137 | 194

Smart Pointers

Unique Pointer: Key Features |||||

DEFERENCING/SUBSCRIPTING
e operator®™ dereferences pointer to managed object
® operator-> dereferences pointer to managed object
® operator|| provides indexed access to managed array
MODIFIERS
e release returns pointer to managed object and releases ownership.
® reset replaces managed object
® swap swaps managed objects
OBSERVERS
® get returns pointer to managed object

e get deleter returns deleter used for destruction of managed object

e operator bool checks if there is associated managed object

138 | 194

Smart Pointers

Unique Pointers: “Pointing to Managed Object” |||||

Listing 92: Test Class
#define __PRINT__ cout << __PRETTY_FUNCTION__ << endl;

class SomeClass

public:
explicit SomeClass(int _x) : x{_x} { __PRINT__ }
~SomeClass() { __PRINT__ }

int x;
};
std::ostream& operator<<(std::ostream& os, const SomeClass& vec) // This provides output to stream
{
0s << vec.Xx;
return os;
}

139 | 194

Smart Pointers

Listing 93: Unique pointers

void t_test()
std::unique_ptr<SomeClass> ptrA = std::make_unique<SomeClass>(123); // SomeClass: :SomeClass(int)
//std::unique_ptr<SomeClass> ptrB = ptrA; // Copy constructor 1is deleted !!
std::unique_ptr<SomeClass> ptrB = std::move(ptrA); // Move 1is required
//cout << ptrA->x << endl; // Error: Access violation reading <
location
cout << ptrB->x << endl; / /0K
} //SomeClass: :~SomeClass ()
stack heap
unique_ptr<T> ptrA managed object
ptr. to T object > T Object

140|198

Smart Pointers

Listing 93: Unique pointers

void t_test()
{
std::unique_ptr<SomeClass> ptrA = std::make_unique<SomeClass>(123); // SomeClass: :SomeClass(int)
//std::unique_ptr<SomeClass> ptrB = ptrA; // Copy constructor 1is deleted !!
std::unique_ptr<SomeClass> ptrB = std::move(ptrA); // Move 1is required
//cout << ptrA->x << endl; // Error: Access violation reading <«
location
cout << ptrB->x << endl; //0K
} //SomeClass: :~SomeClass ()
stack heap
unique_ptr<T> ptrA managed object
ptr. to T object T Object

unique_ptr<T> ptrB

ptr. to T object

140 | 194

Smart Pointers

Unique Pointers: Passing to Functions |||||

Listing 94: Functions to be called

void PassingByValue(std::unique_ptr<SomeClass> p) // RUNTIME ERROR: COPY IS NOT ALLOWED !!!
{
cout << __FUNCTION__ << "\t" << p << "\t" << #p << endl;
(*xp) .x = 2223

void PassingInnerData(SomeClass* p) // OK, BUT VERY DANGEROUS !!!
{

cout << __FUNCTION_

(*p) .x=333;

<< M\t" << p << M\t" << xp << endl;

void PassingByReference(std::unique_ptr<SomeClass>& p)
cout << __FUNCTION__ << "\t" << p << "\t" << *p << endl;
(*xp) .x = 444;

void PassingByRValue(std::unique_ptr<SomeClass>&& p)

cout << __FUNCTION__ << "\t" << p << "\t" << *%p << endl;
(xp) .x = 555;

1108

Smart Pointers

Listing 95: Calling previous functions

void t_passingUniquePointers()

{
auto pO = std::make_unique<SomeClass>(111);
cout << pO << "\t" << *pO << endl; // e.g. 000002260B5F4ABO 111
//auto p2 = pi; // COPY IS NOT ALLOWED
auto p = std::move(p0); // MOVE IS OK
cout << p << "\t" << xp << endl; // ©00002260B5F4ABO 111
//PassingByValue (p2) // COPY IS NOT ALLOWED -> COMPILATION ERROR
//cout << "BEFORE:\t" << p << "\t" << xp << endl; // Uncomment these three lines -> error
//PassingByValue(std: :move(p)); // p BECOMES A HOLLOW OBJECT -> THIS IS CALLED "SINK"
//cout << "AFTER:\t" << p << "\t" << *p << endl; // ERROR: Access violation reading location
cout << "BEFORE:\t" << p << "\t" << *p << endl; // BEFORE: 000002260B5F4ABO 111
PassingInnerData(&(*p)); // PassingInnerData 000002260B5F4ABO 111
cout << "AFTER:\t" << p << "\t" << xp << endl; // AFTER: 000002260B5F4ABO 883
cout << "BEFORE:\t" << p << "\t" << *p << endl; // BEFORE: 000002260B5F4ABO BEE!
PassingByReference(p); // PassingByReference 000002260B5F4ABO 333
cout << "AFTER:\t" << p << "\t" << xp << endl; // AFTER: 000002260B5F4ABO 444
cout << "BEFORE:\t" << p << "\t" << *p << endl; // BEFORE: 000002260B5F4ABO 444
PassingByRValue(std::move(p)); // PassingByRValue 000002260B5F4ABO 444
cout << "AFTER:\t" << p << "\t" << xp << endl; // AFTER: 000002260B5F4ABO 555

}

110|108

Unique Pointer: [], and Deleters |||||

unique ptr has a specialization for array types, i.e. std::unique_ptr<T[]>.

unique ptr is always a template of two parameters. If you provide no second parameter, it is
defaulted to std::default delete<T>, otherwise std::unique_ptr<T, Deleter> is used.

Listing 96: Example on deleter

struct FileCloser

® Deleter implementation has zero memory ¢

. void operator() (FILE *fp) const
cost in case of default deleter, or deleter

assert(fp != nullptr);

of functor/closure type with no state. fclose(fp);
}
® |f no memory cost for deleter state, ¥
unique ptr has same memory cost as raw zm'd Eceleter()
pointer_ FILE xfp = fopen("input.txt", "r");

std::unique_ptr<FILE, FileCloser> uptr(fp);

143 | 194

Shared Pointer |||||

std::shared ptr is smart pointer that retains shared ownership of object through pointer
— reference-counting.

® is movable — move operation transfers ownership
® is copyable — this creates additional owner
® |t contains two pointer — pointer to managed object and pointer to control block.

e Access to underlying control block is thread safe. No guarantee made for accesses to
owned object.

® Use make shared to create shared ptr object.
® Destructor destroyes managed object (if any)

® operator= assigns shared ptr

144 | 194

Shared Pointer: Key Features |||||

DEFERENCING/SUBSCRIPTING
e operator®™ dereferences pointer to managed object
® operator-> dereferences pointer to managed object
® operator|| provides indexed access to managed array
MODIFIERS
® reset replaces managed object
® swap swaps values of two shared ptr objects
OBSERVERS
® get returns pointer to managed object
® use count returns number of shared ptr objects referring to same managed object

e operator bool checks if there is associated managed object

owner before provides owner-based ordering of shared pointers

145 | 194

Control Block |||||

IT CONTAINS:
® pointer to managed object
® use count = the number of shared ptr instances pointing to object

® weak count = the number of weak ptr instances pointing to object, plus one if use count
is nonzero

e other data, e.g. deleter

16| 194

Shared Pointers: “Pointing to Managed Object” |||||

Listing 97: Test Class
#define __PRINT__ cout << __PRETTY_FUNCTION__ << endl;

class SomeClass

public:
explicit SomeClass(int _x) : x{_x} { __PRINT__ }
~SomeClass() { __PRINT__ }

int x;
};
std::ostream& operator<<(std::ostream& os, const SomeClass& vec) // This provides output to stream
{

0s << vec.Xx;
return os;

108

Smart Pointers

Listing 98: Shared pointers

void t_test()
{
std: :shared_ptr<SomeClass> ptrA // SomeClass::SomeClass(int)
= std::make_shared<SomeClass>(123);
{
std::shared_ptr<SomeClass> ptrB = ptrA; // reference-counting ++
cout << *ptrA << endl; // 123
cout << *ptrB << endl; // 123
}
cout << *ptrA << endl;
} // SomeClass::~SomeClass()
stack heap
shared_ptr<T> managed object
ptr. to T object _— > T Object
&
ptr. to control block
\ control block
use count
weak count
custom deleter
ptr. to managed object

148 | 194

Smart Pointers

Listing 98: Shared pointers

void t_test()
{

std: :shared_ptr<SomeClass> ptrA
= std::make_shared<SomeClass>(123);

{
std::shared_ptr<SomeClass> ptrB = ptrA;
cout << *ptrA << endl;
cout << *ptrB << endl;

}

cout << *ptrA << endl;

// SomeClass::SomeClass(int)

// reference-counting ++
// 123
/] 123

// SomeClass::~SomeClass()

stack

shared_ptr<T>

ptr. to T object
&
ptr. to control block

shared_ptr<T>

ptr. to T object
&
ptr. to control block

heap

managed object

|

T Object

control block

use count

weak count
custom deleter
ptr. to managed object

148 | 194

Smart Pointers

Listing 98: Shared pointers

void t_test()
{
std: :shared_ptr<SomeClass> ptrA // SomeClass::SomeClass(int)
= std::make_shared<SomeClass>(123);
{
std::shared_ptr<SomeClass> ptrB = ptrA; // reference-counting ++
cout << *ptrA << endl; // 123
cout << *ptrB << endl; // 123
}
cout << *ptrA << endl;
} // SomeClass::~SomeClass()
stack heap
shared_ptr<T> managed object
ptr. to T object _— > T Object
&
ptr. to control block
\ control block
use count
weak count
custom deleter
ptr. to managed object

148 | 194

Shared Pointers: Passing to Functions |||||

Listing 99: Functions to be called

void PassingByValue(std::shared_ptr<SomeClass> p) //OK, COPY IS ALLOWED
{
cout << "M\t" << p << "\t" << xp << "\t(" << p.use_count() << ")" << endl;
(*xp) .x = 2223
void PassingInnerData(SomeClass* p) // OK, BUT VERY DANGEROUS !!!
{
cout << M\t" << p << M\t" << xp << M\t" << endl;
(*xp) .x = 333;
void PassingByReference(std::shared_ptr<SomeClass>& p) / /0K
cout << "\t" << p << "\t" << xp << "\t (" << p.use_count() << ")" << endl;
(*xp) .x = 444;
void PassingByRValue(std::shared_ptr<SomeClass>&& p) / /0K

cout << "M\t" << p << "\t" << xp << "\t(" << p.use_count() << ")" << endl;
(xp) .x = 555;

149|104

Smart Pointers

Listing 100: Calling previous functions

void t_passingSharedPointers()

{
auto p@ = std::make_shared<SomeClass>(111); // SomeClass::SomeClass(int)
cout << pO << "\t" << *p0O << "\t(" << pO.use_count() << ")" << endl; // 000OO1D6OAF438BO 111 (1)
auto p = po; // COPY IS OK
//auto p = std::move(pO); // MOVE IS OK -> COUNT WILL REMAIN 1
cout << p << "\t" << xp << "\t(" << p.use_count() << ")" << endl; // 00OOO1D6OAF438BO 111 (2)
PassingByValue(p); // ©00OO1D6OAF438BO 111 (3)
//PassingByValue(std::move(p)); // p BECOMES A HOLLOW OBJECT -> THIS IS <«

CALLED "SINK"

cout << p << "\t" << xp << "\t(" << p.use_count() << ")" << endl; // ©O00001D6OAF438BO 222 (2)
PassingInnerData(&(*p)); // ©000O1D6OAF438BO 222
cout << p << "\t" << *p << "\t(" << p.use_count() << ")" << endl; // ©00001D60AF438B0 333 (2)
PassingByReference(p); // ©000001D6OAF438BO 333 (2)
cout << p << "\t" << xp << "\t(" << p.use_count() << ")" << endl; // ©000001D6OAF438BO 444 (2)
PassingByRValue(std::move(p)); // O0OOO1D6OAF438B0O 444 (2)
cout << p << "M\t" << xp << "\t(" << p.use_count() << ")" << endl; // ©00001D6OAF438BO 555 (2)

}

Pointer in Control Block? |||||

® shared ptr, unlike unique ptr, places a
layer of indirection between the physical

heap-allocated object and the notion of

ownership shared_ptr<T> managed object
. ptr. to T object e
&

stack heap

. . . T Object
® shared ptr instances primary participate

K i ptr. to control block
in ref-counted ownership of the control \ oo e
use count
bIOCk' weak count
. . . custom deleter
® The control block itself is sole arbiter of ptr. to managed object
what it means to “delete the controlled . .
i Y Listing 101: Aliasing constructor
ObJeCt. using vec = std::vector<int>;
e " . auto x = {1,2,3,4,5,6};
e ... thus the “inner” pointer (see the red WED PUEE =SB BElE_ShEEEvas> ()8
i std: :shared_ptr<int> p(pvec, &(*pvec)[3]);
arrow) can refer to certain cout << (xpvec)[0] << endl; /11
cout << *p << endl; // 4

parts/members of T object, e.g. i-th

element of inner array.

Smart Pointers

® make shared and make unique wrap raw new
® ~shared ptr and ~unique ptr wrap raw delete
® unique ptr<T> is implicitly convertible to shared ptr<T>

std::shared_ptr<T> sptr = std::make_unique<T>();

152 | 194

Weak Pointer |||||

std::weak ptr is smart pointer holding non-owning reference to object managed by shared ptr.

can not be deferenced — (*ptr) is forbidden

It must be converted to shared ptr in order to access referenced object.

It has the same physical layout as shared ptr.

is movable and copyable

Reference counting nature of shared ptr causes it to leak memory in case of circular references
— such cycles should be broken with weak ptr.

Think of a weak ptr as a “ticket for a shared ptr.” The “redeem a ticket” operation can be
spelled in two ways: by explicit type-conversion, or by calling wptr.lock().

if (auto sharedPtr = weakPtr.lock()){ sharedPtr-> ... ; }

153 | 194

Weak Pointer: Key Features |||||

® Use weak ptr to create weak pointer.
® Destructor destroys weak pointer.
® operator= assigns weak _ptr
MODIFIERS
e reset releases reference to managed object
® swap swaps values of two weak ptr objects
OBSERVERS
® use count returns number of shared ptr objects referring to same managed object

e expired checks if referenced object was already deleted

lock creates shared ptr that manages referenced object

owner before provides owner-based ordering of weak pointers

154 | 194

Weak Pointers: “Pointing to Managed Object” |||||

Listing 102: Test Class
#define __PRINT__ cout << __PRETTY_FUNCTION__ << endl;

class SomeClass

public:
explicit SomeClass(int _x) : x{_x} { __PRINT__ }
~SomeClass() { __PRINT__ }

int x;
};
std::ostream& operator<<(std::ostream& os, const SomeClass& vec) // This provides output to stream
{

0s << vec.Xx;
return os;

155 | 194

Smart Pointers

Listing 103: Weak pointers
void t_test()
{

std::weak_ptr<SomeClass> ptrB; // Not dinitialized
{

auto ptrA = std::make_shared<SomeClass>(123); // SomeClass::SomeClass(int)
ptrB = ptrA;

cout << ptrB.use_count() << endl; // 1
//cout << *ptrB << endl; // NOT ALLOWED
3 // SomeClass::~SomeClass() !!
auto tmp = ptrB.lock(); // tmp 1is shared_ptr
cout << xtmp << endl; // ERROR! Managed object was destroyed
}
stack heap
shared_ptr<T> managed object
ptr. to T object —_—> T Object
&
ptr. to control block
\ control block
1

use count

weak count
custom deleter

ptr. to managed object

156 | 194

Smart Pointers

Listing 103: Weak pointers

void t_test()
{

std::weak_ptr<SomeClass> ptrB;

ptrB = ptrA;
cout << ptrB.use_count() << endl;
//cout << *ptrB << endl;

}

auto tmp = ptrB.lock();

cout << xtmp << endl;

// Not initialized

auto ptrA = std::make_shared<SomeClass>(123); // SomeClass::SomeClass(int)

// 1

// NOT ALLOWED

// SomeClass::~SomeClass() !!!

// tmp 1is shared_ptr

// ERROR! Managed object was destroyed

stack

shared_ptr<T>

ptr. to T object
&

ptr. to control block

weak_ptr<T>

ptr. to T object
&

ptr. to control block

heap

managed object

|

T Object

control block

use count 1
weak count 2
custom deleter
ptr. to managed object

Smart Pointers

Listing 103: Weak pointers
void t_test()
{

std::weak_ptr<SomeClass> ptrB; // Not dinitialized
{

auto ptrA = std::make_shared<SomeClass>(123); // SomeClass::SomeClass(int)
ptrB = ptrA;

cout << ptrB.use_count() << endl; // 1
//cout << *ptrB << endl; // NOT ALLOWED
3 // SomeClass::~SomeClass() !!
auto tmp = ptrB.lock(); // tmp 1is shared_ptr
cout << xtmp << endl; // ERROR! Managed object was destroyed
}
stack heap

|
control block
weak_ptr<T> use count 0
ptr. to T object weak count
custom deleter
ptr. to control block ptr. to managed object | nullptr

156 | 194

Smart Pointers

Smart Pointers: Circular References |||||

Using smart pointers bring some challenges that must be solved in real applications. One of
them is related to circular references. Using shared pointers can be dangerous when a complex

data structure (e.g. trees, graphs) contain circuits.
@ We refer to [1] page(s) 937-954 for more details.

This problem will be discussed in more detail on our practical lessons.

157 | 194

Smart Pointers

Smart Pointers: Good to Know |||||

@ Use unique ptr or shared ptr to represent ownership.

@® Prefer unique ptr over shared ptr unless you need to share ownership.

©® Use make unique() to make unique ptrs .

@ Use make shared() to make shared ptrs .

@ Use std::weak ptr to break cycles of shared ptrs .

® Take smart pointers as parameters only to explicitly express lifetime semantics.

@ If you have non-std smart pointers, follow the basic pattern from std.

® Take a unique ptr<T> parameter to express that a function assumes ownership of a T.

© Take a unique ptr<T>& parameter to express that a function reseats the T.

i Take a shared ptr<T> parameter to express that a function is part owner of T.

® Take a shared ptr<T>& parameter to express that a function might reseat the shared
pointer.

® Take a const shared ptr<widget>& parameter to express that it might retain a reference
count to the object.

® Do not pass a pointer or reference obtained from an aliased smart pointer.

158 | 194

STL Overview

STL Overview

Introduction to STL |||||

@ See the basics for Standard Template Library in [1] page(s) 540-641.

In the following slides, only key features will be highlighted.

159 | 194

Standard Template Library (STL) |||||

® “Developed”’ by Alexander Stepenov & Meng Lee at Hewlett Packard.
® Provides number of functionalities grouped in std namespace.

® Based on templates — almost every stl component is a template.

160 | 194

STL Components, sublibraries |||||

language support library (e.g., exceptions, memory management)

diagnostics library (e.g., assertions, exceptions, error codes)

general utilities library (e.g., functors, date/time)

strings library (e.g., C++ and C-style strings)

localization library (e.g., date/time formatting and parsing, character classification)
containers library (e.g., sequence containers and associative containers)

iterators library (e.g., stream iterators)

algorithms library (e.g., searching, sorting, merging, set operations, heap operations,
minimum/maximum)

numerics library (e.g., complex numbers, math functions)

input/output (1/O) library (e.g., streams)

regular expressions library (e.g., regular expression matching)

atomic operations library (e.g., atomic types, fences)

thread support library (e.g., threads, mutexes, condition variables, futures)

161 | 194

STL: What use it? !

PROS:
e quicker development — no need to develop commonly used classes
e reliable — C++ standard news are taken into account (memory safety, type safety, ...)
® portable
e efficient & fast (with respect to others features)
® accurate
® smaller and readable code — lower maintenance of the code
CONS:

performance (was also a pros?) — sometimes things can be done in better way with
respect to performance, but usually with lower safety, portability or versatility.

162 | 194

STL Overview

STL Core Components |||||

Containers and adopters represent data and provides variety of methods for accessing data in
different time complexity.

® Sequence containers

® QOrdered associative containers

¢ Unordered associative containers (hashed)
e Container adopters

Algorithms represent operations on that data.
lterators serve as a middle layer between containers and algorithms.

163 | 194

STL Overview

STL Containers

Sequential Containers

array
vector
deque
forward _ list
list

Associative Containers

set, multiset
map, multimap

Unordered Containers

unordered _set, unordered multiset
unordered map, unordered multimap

stack
queue, priority _queue

Header File COMMON FEATURES:
<array>

<vector> e deafualt constructor
<deque> ® uniform initialization
<forward _list> .

<list> copy constructor
Header File ® jterator constructor
<set> .

<map> * size()

Header File L] cIear()

<unordered _set> o begin(), end()

<unordered _map>

e default allocator
<stack>
<queue>

164|104

STL Containers: array |||||

® is a wrapper around normal C-style arrays. |icing 104 stdiarray

void t_array()

® supports iterators. (

. . std::array<int, 5> a{0,4,3,1,2};

® knows about its size. for (size_t i=0; i<a.size(); ++1)

{

e provides random access. cout << ali] <<ty
. . cout << endl;

® can be used with C functions. ’

std::array<int, 5> b = {0,4,3,1,2};

® can not grow, size is fixed at compile time //std::array<int> {0,4,3,1,2}; // Not allowed
std::array d{0,4,3,1,2}; // OK since C++17

//Since C++20

// auto e { std::to_array<int, 5>({0,4,3,1,2}) };
// auto f { std::to_array<int>({0,4,3,1,2}) };

// auto g { std::to_array({0,4,3,1,2}) };

165 | 194

STL Iterator |||||

e |terator is an object that allows iteration over collection of elements, where elements are
often (but not necessarily) in container.
® lterators support many of same operations as pointers, e.g. *, ->, ==, I=, ++,--, ...,
in depending on type.
® There are five different types of iterators: 1) input, 2) output, 3) forward, 4) bidirectional,
and 5) random access
® Has one of three possibilities of access order:
@ forward (i.e., one direction only)
® forward and backward
© any order (i.e., random access)
® Has one of three possibilities in terms of read/write access:

@ can only read referenced element (once or multiple times)
@ can only write referenced element (once or multiple times)
© can read and write referenced element (once or multiple times)

166 | 194

STL Overview

An iterator is created through begin() and end() functions called on a container.

Listing 105: Iterator

void t_print()
{
std::array<int, 8> a{0,4,3,1,5,3,1,2};
for(const auto x : a)
cout << x << " "y
}
0 4 3 1 5 3 1 2 cout << endl;
for (auto it = a.begin(); it != a.end(); it++)
{
cout << *it << " "y
i }
begln() end() cout << endl;
//#include <algorithm>
std::for_each(a.begin(), a.end(),
[I(const int& x) { std::cout << x << " " 5 })3
cout << endl;
}

167 | 194

STL lterator: Good to Know |||||

Do not dereference iterator unless it is known to validly reference some object.
e Some operations on container can invalidate some or all iterators.

® |ncrementing iterator past end of container or decrementing iterator before beginning of
container results in undefined behavior

Input and output iterators can only be dereferenced once at each position.

168 | 194

STL Containers: vector |||||

Listing 106: std::vector - three most used initializations

L4 represents a dynamic array. void t_vector()
{
) 1 std::vector<int> v0{0,4,3,1,2};
Supports iterators. cout << "size = " << vO.size() << endl; // 5
° iS efﬁcient f‘or adding/remova| cout << "capacity = " << v@.capacity() << endl; // 5
at the end //std::vector<int> vl = std::vector(10); // until C++14
. std::vector<int> v1(5, 0); // {0,0,0,0,0}
e provides random access. cout << "size = " << V1.size() << endl; /15
cout << "capacity = " << vl.capacity() << endl; // 5
° . ..
grow automatically, init s vector<int va; o
capacity can be set v2.reserve(s); 1LY
cout << "size = " << v2.size() << endl; // ©
cout << "capacity = " << v2.capacity() << endl; // 5
}

@ Take a look at a nice overview on geeksforgeeks.

169 | 194

https://www.geeksforgeeks.org/vector-in-cpp-stl/

STL Overview

vector: push back, emplace back |||||

This is about adding items to a vector instance. Try to avoid insert methods, especially
inserting elements at the beginning of the vector. Adding at the end is O(1).

push back

Adds a new element at the end of the vector, after its current last element. The content of
value is copied (or moved) to the new element. Container size is increased by one if needed
— automatic reallocation.

emplace back

Inserts a new element at the end of the vector, right after its current last element. This new
element is constructed in place using args as the arguments for its constructor. Container size
is increased by one if needed — automatic reallocation.

If possible, reserve a storage (memory) for vector elements!!! See the benchmark on the next
slide.

170 | 194

STL Overview

vector: Preallocating storage |||||
. i " . g LA

Without “reserve With “reserve

Listing 107: std::vector - push or emplace leads to reallocation Listing 108: std::vector - push or emplace with preallocated memory

void t_0() void t_1()

{ {
size_t length = 1 << 27; /12727 size_t length = 1 << 27; //2"27
std::vector<size_t> v; std::vector<size_t> v;

v.reserve(length);

for (size_t i=0; i<length; ++i) for (size_t i=0; i<length; ++i)
//v.push_back (i) ; { //v.push_back (i) ;
v.emplace_back(i); v.emplace_back(i);
y y
push back — 0.941 s push back — 0.381 s
emplace back — 0.899 s emplace back — 0.357 s

HW used for benchmark: Notebook, CPU: i7-8565U, 16GB RAM, OS Win10 x64

171 | 194

vector: remove, erase, shrink to_fit |||||

This is about removing items from in-between a vector instance. When an item disappears
from somewhere in the middle between other items, then all items right from it must move one
slot to the left — runtime cost within O(n).

remove

It works by overwriting “bad” elements with “good” succeeding elements, and return new END
of sequence. Beware of pointers! It preserves size and capacity!

erase

Invalidates iterators and references at or after the point of the erase, including the end()
iterator. It does not change capacity.

shrink_to_fit

This can be called to reduce allocated capacity to fit size of the container. This make a new
allocation.

172 | 194

vector: Removing elements, preserving elements ordering |||||

Listing 109: std::vector - removing elements — preserving ordering

template<typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& v)

std::for_each(v.begin(), v.end(), [&](const int& x) { os << x << " " ; })3
0s << "\tSize:" << v.size() << "\tCapacity:" << v.capacity() << endl;
return os;

}
void t_eraseRemoveA()
{
std::vector<int> v{0,9,9,9,1,2,3,4};
cout << v; // ©9 991234 Size:8 Capacity:8
const auto newEnd (remove(begin(v), end(v), 9));
cout << v; // 01234234 Size:8 Capacity:8
v.erase(newEnd, v.end());
cout << v; // 01234 Size:5 Capacity:8
v.shrink_to_fit();
cout << v; // 01234 Size:5 Capacity:5
}

173 | 194

vector: Removing elements, breaking elements ordering |||||

Listing 110: std::vector - removing elements — breaking ordering

void t_eraseRemoveB()

{
std::vector<int> v{0,9,9,9,1,2,3,4};
cout << v; // ©9 991234 Size:8 Capacity:8

auto it = v.begin();
for (; itl=v.end(); it++)
{

if (xit == 9)

{
//std::swap(*it, v.back());
*it = std::move(v.back());
v.pop_back();

}
cout << v; // 04321 Size:5 Capacity:8

v.shrink_to_fit();
cout << v; // 04321 Size:5 Capacity:5

74108

STL vector: Sequential Containers |||||

array —>» where can grow
= linked elements
vector } |:| value
deque E
) > > > i
list o < <
A A A
forward_list - - -

175 | 194

STL Overview

STL Containers: set, multiset |||||

are implemented as binary tree. [value

Elements/Values represent keys.

Their elements are sorted (<,>).

Does not provide random access — need to iterate

Elements can not be modified directly.

176 | 194

STL Containers: map, multimap |||||

® are implemented as binary tree. Et:;e
e Their elements are key-value pairs.

® Elements are sorted by keys only (<,>).

[]

Does not provide random access — need to iterate

® Keys can not be modified directly.

177 | 194

STL Containers: Unordered Containers |||||

® They are associative containers implemented as hash tables.
® Elements are hashed and stored in undefined order.

¢ Fast search/insertion/deletion — this may decrease in performance over time and size of
containers — rehashing

® |terators are constant, adding an removal of elements is affected by a hash function.
® In case of unordered set and unordered multiset, values act as keys for hashing.

® In case of unordered map and unordered multimap, key-values pair are stored, where
keys are used for hashing.

® unordered multiset and unordered multimap can contain duplicities.

178 | 194

STL Overview

Storing data in a hash table depends on inner implementation. The main difference consists in
solving possible collisions. Hash table is rehashed when Load Factor=|entries|/|capacity| — 1.

element . element

[]
|

Hash Function Hash Function

T11> see[[][I1]—
NN 1

looking for another free
bucket to store the element
in case of collision

“A

Buckets ‘ ‘ ‘

adding elements
into bucket's
linked list

—> where cangrow — insertionpath | | value

179 | 194

STL Overview

STL Containers: unordered set

Listing 111: std::unordered set

{

}
{

template<typename T>
std::ostream& operator<<(std::ostream& os, const std::unordered_set<T>& s)

cout << "Buckets count: " << s.bucket_count()
cout << "Load factor: " << s.load_factor() <<
cout << "Number of elements: " << s.size() <<

cout << endl;
for(const auto& x : s)
0s << "Bucket #: " << s.bucket(x) << "\t"
os << endl;
return os;

void t_unorderedSet()

std::unordered_set<std::string> data;
data.insert("This");
data.insert("is");

data.insert("an");
data.insert("unordered set");
data.insert("example.");

cout << data;

<< endl;
endl;
endl;

<< x << endl;

Buckets count:
Load factor:

0.625

Number of elements: 5

Bucket
Bucket
Bucket
Bucket
Bucket

This

example.

is

an

unordered set

See the ordering of
elements. Moreover, two
elements are stored with
the same bucket id.

180 | 194

STL Overview

STL Containers: unordered map

Listing 112: std::unordered map

template<typename S, typename T>
std::ostream& operator<<(std::ostream& os, const std::unordered_map<S,T>& m)
// for(const auto& x : m)
// os << "first: " << x.first << "\tsecond: " << x.second << endl;
for(const auto& [key, value] : m) // structured binding since C++17
os << "first: " << key << "\tsecond: " << value << endl;
os << endl;
return os;
}
void t_unorderedMap ()
{
std::unordered_map<std::string, int> um = {
{"abc", 123},
{"def", 456}
};
std::unordered_map<std::string, std::string> data;
data.insert(std::make_pair("Hey", "you"));
data.insert({"Hello", "VSB"});
data["Key"] = "Value";
data["C++"] = "Good";
data["C#"] = "Good";
data["VB"] = "Bad";
cout << dataj;
}

second:
second:
second:

second:
second:
second:

See the ordering of
elements.

NEWSs
first, second members
structured binding

181 | 194

STL Containers: hash |||||

Listing 113: std::unordered set - Custom class hashing
class Student

{
public:
Student(const std::string& _name, const std::string& _login) : name{_name}, login{_login} {}
const std::string& getName() const { return name; }
const std::string& getLogin() const { return login; }
private:
std::string name;
std::string login;

5
struct StudentHash

size_t operator() (const Student& s) const

{
auto h® = std::hash<std::string>{}(s.getName());
auto hl = std::hash<std::string>{}(s.getLogin());
return he A hi;
}
15
struct StudentEquality
{

bool operator()(const Student& sO@, const Student& sl) const
{
return sO.getlLogin() == sl.getLogin();

}s
182 | 194

STL Overview

See the usage of three custom types:

@ Data storage — Student

® Type providing hashing function — StudentHash

©® Type checking equality — StudentEquality ... (The same can be achieved by overriding

operators == and !|= in the Student class.)
Listing 114: ... and its usage
void t_hash()
{
std::unordered_set<Student, StudentHash, StudentEquality> <
students;
students.insert(Student{"Franta Omacka", "MAL123"});
students.insert(Student{"Lucka Blahova", "BLA456"});
students.insert(Student{"Karel Nejedly", "NEJ456"});
for (const auto& x: students)
{
cout << x.getlLogin() << "\t" << x.getName() << endl;
}

MAL123 Franta Omacka
BLA456 Lucka Blahova

NEJ456 Karel Nejedly

183 | 194

STL Overview

STL Containers: Other useful data types |||||

std::bitset
is available in the std namespace in the <bitset> header. A bitset represents a fixed-size
sequence of bits, with the size defined at compile time.

Listing 115: bitset
|void t_bitsets()

{

} std::bitset<8> b1i; // [0,0,0,0,0,0,0,0]

| std::bitset<8> b2{ 10 }; // [0,0,0,0,1,0,1,0]

\ std::bitset<8> b3{"1010"}; // [0,0,0,0,1,0,1,0]

| std::bitset<8> b4{ "ooooxoxo", 8, ’o0’, ’x’ }; // [0,0,0,0,1,0,1,0]
|3

Contains all expected functions, e.g. count, any, all, none, test, ...
and operators, e.g. [], &,

L~ T &y

184|104

STL Overview

std::pair

is an abstract data structure found in the standard library which can bound two heterogeneous
values. Pair is an ordered structure — has tu members — first, second.

Use it instead of creating “artificial” types, e.g. struct s {int x; int y;};

Listing 116: pair

void t_pairs()

std::pair<int, std::string> p1{123, " Hello VSB"};
cout << pl.first << "\t" << pl.second << endl;

std::pair<int, std::string> p2;
p2.first = 123;
p2.second = "Hello VSB";

std::pair<int, std::string> p3 = std::make_pair<int, std::string>(123, " Hello VSB");
std::pair<int, std::string> p4 = std::make_pair<>(123, " Hello VSB");
auto p5 = std::make_pair<>(123, " Hello VSB");

auto [a, b] = p5; // binding: int a=p5.first; std::string b=p5.second
cout << a << "\t" << b << endl;

}

Pairs are also useful when iterating map, multimaps, ...

185 | 194

STL Overview

std::tuple

is used when a “pair” is not enough because more values are needed. It has unnamed members
that can only be retrieved with a function call (std::get<id>(tupple)), or can be copied to
named variables.

Listing 117: tuple

void t_tuples()
{
using std::get;
std::tuple<int, std::string, bool> t1{123, " Hello VSB", true};
cout << get<@®>(tl) << "\t" << get<l>(tl) << "\t" << get<2>(tl) << endl;
std::tuple<int, std::string, bool> t2;
get<o>(t2) = 123; get<1>(t2) = "Hello VSB"; get<2>(t2) = true;
std::tuple<int, std::string, bool> t3 = std::make_tuple<int, std::string>(123, " Hello VSB", true);
std::tuple<int, std::string, bool> t4 = std::make_tuple<>(123, " Hello VSB", true);
auto t5 = std::make_tuple<>(123, " Hello VSB", true);
// binding: int a=get<0>(t5); std::string b=get<1>(t5); bool c=get<2>(t5);
auto [a, b, c] = t5;
cout << a << "\t" << b << "\t" << ¢ << endl;
if (auto [a, b, c] = t5; c == true)
cout << "U are a good programmer." << endl;
}

186 | 194

STL Algorithms

STL Algorithms |||||

@ See the basics for Standard Template Library in [1] page(s) 567-579.

Moreove, we strongly recommend to watch the following presentation or to read its offline PDF
version.

@ Jonathan Boccara prepared a nice talk on CppCon2018 105 STL Algorithms in Less than
an Hour. PDF version can be downloaded here.

187 | 194

https://www.youtube.com/watch?v=2olsGf6JIkU
https://www.youtube.com/watch?v=2olsGf6JIkU
https://2018.cppconf-piter.ru/talks/day-1/track-a/3.pdf

STL Snippets

STL Snippets

STL Snippets |||||

STL is pretty complex and large to explain in a single presentation. That is why we focus on
snippets and code examples that can help you with your daily coding.

This function will be used in all below mentioned examples. It allows us to print std::vector to
the standard output.

Listing 118: ... output std::vector

| template<typename T>

| std::ostream& operator<<(std::ostream& os, const std::vector<T>& v)

[{

\ std::for_each(v.begin(), v.end(), [&](const T& x) { os << x << " " + });

| 0s << endl << "Size: " << v.size() << "\tCapacity: " << v.capacity() << endl << endl;
| return os;

|3

188 | 194

STL Snippets: random |||||

Try to avoid rand() in real applications because of poor quality from the perspective of

generating random numbers (range, periodicity, distribution, ...).
Listing 119: generating function Listing 120: ... and its usage
std::vector<int> createRandom(const size_t count, const int minV, const int maxV) void t_random()
std::random_device rd{}; // used for seeding and pseudo-random engine std::vector<int> v =
auto mt = std::mt19937_64{rd()}; // one of available engines createRandom(10,0,2);
auto dist = std::uniform_int_distribution{minV, maxV}; // one of the <« cout << v;
available distributions 3
// decltype(dist.param()) newLimits{0,100}; // changing limits at runtime
// dist.param(newLimits); 1202212022

Size: 10 Capacity: 10

std::vector<int> v;
v.reserve(count); // Preallocate space
for (size_t i=0; d<v.capacity(); ++i)

{
}

return v;

v.emplace_back(dist(mt));

189 | 194

STL Snippets: sets

Listing 121: working with sets

void t_sets()
{
std::vector<int> a{0,1,2,3,4,5,6,7,8,9};
cout << "a: " << aj;
std::vector<int> b{0,1,2,10,12,13};
cout << "b: " << bj
std::vector<int> added; // b-a
std::set_difference(b.begin(), b.end(), a.begin(), a.end(),
std::back_inserter (added));
cout << "added: " << added;
std::vector<int> removed; // a-b
::set_difference(a.begin(), a.end(), b.begin(), b.end(),
std::back_inserter(removed));
cout << "removed: " << removed;
std::vector<int> unionAB;
std::set_union(a.begin(), a.end(), b.begin(), b.end(),
std: :back_inserter(unionAB));
cout << "unionAB: " << unionAB;
vector<int> intersectionAB;
set_intersection(a.begin(), a.end(), b.begin(), b.end(),
std::back_inserter (intersectionAB));
cout << "intersectionAB: " << dintersectionAB;
}

a: 123456789
Size: 10 Capacity: 10

b: 612 10 12 13
Size: 6 Capacity:

added: 10 12 13
Size: 3 Capacity:

removed: 3 4 56 7 8 9
Size: 7 Capacity: 9

unionAB: @ 1 2 3456 7 89 10 «+
12 13
Size: 13 Capacity: 13

itersectionAB: 0 1 2
Size: 3 Capacity: 3

190 | 194

STL Snippets: binary search, find, find if, count, count_if |||||

Listing 122: searching for elements and counting

void t_findingElements() 5 is 1in the vector: true
5 is 1in the vector: true
std::vector<int> v{0,1,2,3,4,5,6,7,8,9,10,11}; 5 is 1in the vector: true
Number of occurences of 5: 1
int x = 5; Number of even numbers: 6
bool r® = std::binary_search(v.begin(), v.end(), x); // v must be sorted !
cout << x << " s 1in the vector: " << std::boolalpha << r@ << endl;
auto rIter = std::find(v.begin(), v.end(), x); // v must not be sorted
cout << x << " js 1in the vector: " << std::boolalpha

<< (rIter!=v.end()) << endl;

rIiter = std::find_if(v.begin(), v.end(), [&x](int i){return (i==x);});
cout << x << " is in the vector: " << std::boolalpha
<< (rIter!=v.end()) << endl;

auto rl = std::count(v.begin(), v.end(), x);
cout << "Number of occurences of: " << x << ": " << rl << endl;

rl = std::count_if(v.begin(), v.end(), [1(int i){return (i%2 == 0);});
cout << "Number of even numbers: " << rl << endl;

191 | 194

STL Snippets

STL Snippets: transform

Listing 123: transofrming elements

{

void t_transform()

std::vector<int> v{e,1,2,3,4,5,6,7,8,9};
cout << "v: " << v;

std::vector<int> r;

std::transform(v.begin(), v.end(), std::back_inserter(r),
[1(int i){ return i%*2;});

cout << "r: " << rj

// Reuse r when it is already initialized and has required number of elements
std::transform(v.begin(), v.end(), r.begin(), [J(int i){ return i*3;});
cout << "r: " << ry

// make a sum of two vecotrs.

// The second range needs to be at least as long as the first one.

std::vector<int> sumVR;

transform(v.begin(), v.end(), r.begin(), std::back_inserter(sumVR),
[1(¢int i, dint j){ return i+j;});

cout << "sumVR: " << sumVR;

v: 012

Size:

10

r: 024

Size:

10

r: 036

Size:

10

3456789
Capacity: 10

6 8 10 12 14 16 18
Capacity: 13

9 12 15 18 21 24 27
Capacity: 13

4 8 12 16 20 24 28 32 «

Capacity: 13

192 | 194

STL Snippets: sort, partition |||||

Sort: Reorder the range of elements.
Partition: All elements for which the predicate P returns true precede the elements for which
predicate P returns false. Relative order of the elements is not preserved.

Listing 124: sorting and partitioning

void t_sorting() Before: 10 1 50 7 8 3 2
Size: Capacity:
std::vector v = createRandom(10,0,10);
cout << "Before: " << v; After: © 123577738
std::sort(v.begin(), v.end()); Size: 10 Capacity:
cout << "After: " << v;
std::sort(v.begin(), v.end(), std::greater<int>()); Descresing: 10 8 7 7 7 5
cout << "Descresing: " << v; Size: 10 Capacity:
std::sort(v.begin(), v.end(), [J(int a, int b) { return a%2 < b%2; });
cout << "Custom: " << v; Custom: 10 8 2 0 77 7 5
} Size: Capacity:
void t_partitioning() Befor 94810 86 27
Size: 10 Capacity:
std::vector v = createRandom(10,0,10);
cout << "Before: " << v; After: 340286 10 7 8 9
auto pPoint = std::partition(v.begin(), v.end(), [1(int i){ return i<5;}); Size: 10 Capacity: 10
cout << "After: " << v;

cout << "Partition Point: " << *pPoint << endl; Partition Point: 8

}

193 | 194

References

References |||||

[1] M. Adams.
Lecture slides for programming in c++ (version 2020-02-29), 2020.

[2] J. Galowicz.
C++ 17 STL Cookbook.
Packt Publishing Ltd, 2017.

[3] G. O'Regan.
C and c++ programming languages.
In The Innovation in Computing Companion, pages 63—-68. Springer, 2018.

[4] B. Stroustrup.
The C++ programming language.
Addison-Wesley, Upper Saddle River, NJ, fourth edition edition, 2013.

[5] D. Zak.
Introduction to Programming with C++: 8th Edition.
Cengage Learning, 2016.

104|104

Thank you for your attention

	How to work with this document
	Another ``first'' step to C++
	C++ Basics
	Helper Functions, Definitions
	Structures
	Unions
	Alignment, Padding
	bitfields
	Classes
	References
	Working with Resources
	More on Classes
	Copy Elision
	Inheritance
	Upcasting and Downcasting
	Hiding and Overloading
	Run-time polymorphism, Virtuals
	Back to Inheritance
	Smart Pointers
	STL Overview
	STL Algorithms
	STL Snippets
	References
	

