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Chapter 1

Introduction

Present requirements on the information volume, speed of transfer and performance can

only be satisfied at carrier frequencies in the optical range. Integrated and fiber pho-

tonics is focused on the realization of compact, high capacity communication systems for

generation, treatment, transfer and detection of information at optical frequencies. This

requires the solution of numerous physical and technological problems. The integration of

optoelectronic elements has become a necessity. Without the optical element integration,

the power requirements in present computer networks would increase to an unacceptable

level.1

The optical signal propagation in optical circuits and devices is achieved by wave-

guiding. The use of laser in optical communications was enabled by the realization of low

loss optical fiber waveguides. These connect any distant points on the globe at the light

velocity. The present monomode optical fiber waveguides employing the carrier wave-

lengths of 810 nm, 1,3 µm, or 1,55 µm transfer data at the speed of 10 terabits per second

(10×1012 bit/s). This corresponds to 150 milion telephone calls. Several optical elements

were realized in optical fiber waveguides, among them, diffraction gratings, nonlinear el-

ements, amplifiers, oscillators (in the fibers doped by rare earth 4f metals, e.g., Er, Yb),

etc.

Based on the optical waveguides, important specific important applications employed

in physics, chemistry, biology, medicine and technology were developed, i.e., optical thin

film and fiber sensors of physical and chemical quantities including mechanical stress and

strain, highly sensitive submarine microphones, sensors of electric currents and magnetic

fields including magnetometers for femto Tesla (10−15 Tesla) range, humidity sensors,

chemical pollution sensors, position sensors, i.e., optical fiber gyroscopes (based on the

Sagnac effect), etc. The optical fiber waveguides are employed in probing combustion

1P. K. Tien, Integrated optics and new wave phenomena in optical waveguides, Rev. Mod. Phys.

49, 361–455 (1977), T. Tamir, ed. Integrated Optics, Springer Verlag, Berlin 1975, R. G. Hunsperger,

Integrated Optics: Theory and Technology, Springer Verlag, Berlin 1982.
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2 CHAPTER 1. INTRODUCTION

chambers, monitoring clinical picture of human organs, mapping furnace temperature,

strain in concrete bridge beams, etc.

Unlike metallic conductors, e.g., coaxial cables, dielectric optical waveguides are resis-

tant against electromagnetic noise and wiretapping. The absence of short circuit sparks

makes them suitable for the use in fire danger areas, e.g., in airplanes for inner commu-

nication systems. Expensive copper in classical communication systems is replaced by

widely available silicon oxide, SiO2 . However, this must be of extremely high purity. The

concentration of transition metal atoms must be reduced to 10−9 . Another advantages of

integrated optical circuits against classical systems consists in miniaturization, improved

mechanical and temperature stability, improved reliability and lower cost. Compared to

free space microwave and optical communications, the fiber optic cables are vulnerable to

earth quakes.

From the physical point of view, the integrated and fiber optoelectronics deals with

problems of electromagnetic waves localized in the structures with one or two dimensions

of the order of radiation wavelength. The propagation in dielectric waveguides exploits

the interference effects and total internal reflection. The analysis starts from Maxwell

theory of electromagnetic waves which leads to the solution of vector wave and diffuse

equations.

The confinement of electromagnetic waves in waveguides shows formal correspondence

with confinement of quantum particles in potential wells. Then, a free particle charac-

terized by continuous energy spectrum corresponds to a (non localized) radiation mode.

A particle in a potential well with a discrete energy spectrum corresponds to bound

waveguide modes with a discrete spectrum of propagation constant. The formalism of

Hermitian matrices displays a certain analogy with the formalism employed in the descrip-

tion of guided modes in dielectric waveguides built on lossless media. A one dimensional

(non)symmetrical potential well with a step profile corresponds to a (non)symmetrical

planar dielectric waveguide with a step profile of the real index of refraction.2

A two dimensional potential well corresponds to a two dimensional dielectric wave-

guide. The problem of waveguides with a parabolic profile of the index of refraction

squared (dielectric permittivity) can be solved using known solutions for potential wells

with parabolic profiles, i.e., for those pertinent to a harmonic oscillator,3

n2 = n2
f

(
1− x2/x2

0

)
,

restricted to a practical range of the real index of refraction, n , i.e., n > 1 The analogy

2An infinitely deep potential well corresponds to waveguide with infinitely conducting walls made of an

ideal metal. Then the wave function is zero beyond the wall and the penetration depth at the waveguide

interfaces tends to zero.
3H. Kogelnik, Theory of Dielectric Waveguides, in T. Tamir, ed. Integrated Optics, Springer Verlag,

Berlin 1975.
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can be extended to other profiles, e.g., a profile characterized by a function 1/
(
cosh2 x

)
=

sech2x ,

n2 = n2
s + 2ns ∆n/ cosh2 (2x/h)

(h represents an effective waveguide thickness) or to dielectric structures with the sym-

metry of circular or elliptical cylinder (optical fibers).

In analogy with the Bloch states in crystals, there are also Bloch states in structures

with translation symmetry in one, two or three dimensions. In optics and photonics, the

dielectric structures displaying two or three dimensional translation symmetry are known

as photonic crystals. The physics of dielectric waveguides and the non relativistic quantum

physics share approximations in the solutions to analogous problems using perturbation

theory, variational calculus, orthonormal series, etc. Analysis of electromagnetic waves

in structures of integrated optoelectronics and fiber optics is employed in the design of

devices, circuits, and systems and in modeling of their optical response.

Thanks to the progress in technology, optical circuits and devices can be realized with

the resolution better than a fraction of radiation wavelength in a medium. Note that the

radiation wavelength, λ , in a non absorbing medium characterized by the real index of

refraction, n , may be much smaller than the wavelength in a vacuum, λvac , λ = λvac/n .

The requirements on the lithography resolution can be appreciated on distributed feedback

lasers and lasers with Bragg reflectors which are built on semiconductors with n ≈ 3, 6 .

1.1 Circuits and Devices

The circuits of integrated optoelectronics involve planar, channel and fiber waveguides

suitable for a undistorted broad band transmission of optical signals, radiation sources

(lasers), amplifiers, detectors, couplers, modulators, frequency selective filters, switchers,

phase shifters, multiplexors, interferometers, attenuators, non reciprocal devices, etc. The

microwave modulation at optical carrier frequency can be realized using electroabsorption

in semiconductors ( electroabsorption modulated lasers, EML).

1.2 Materials

Dielectrics (the real index of refraction, n , much greater than the extinction coefficient,

k , i.e., n � k) are mostly employed in waveguides for passive transmission at optical

frequencies.

Semiconductors, mostly the family III-V (e.g., Ga1−xAlxAs, InP), are employed in

monolithic integrated optical circuits as lasers, amplifiers, and detectors (n ≈ k ). With

the band gap controlled by chemical composition, the semiconductors can perform other
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functions including modulation and passive waveguiding (n� k). A special modern area

is represented by silicon photonics.4

Metals ( n� k) are employed as effective reflectors, modal filters, transmission of plas-

mons, n� k at frequencies below the plasma edge (long range surface plasmons). They

can be employed as optically transparent electrodes for thin film electrooptic switches and

modulators. A considerable attention is paid to the waves at interfaces between a metal

and a dielectrics in the spectral region where the metal (e.g., Au or Ag) displays a real

negative permittivity (n2 − k2 < 0 , 2nk ≈ 0).5 Ferromagnetic metals (Fe, Co, Ni) find

use in magnetooptical and nonreciprocal devices.

From the point of view of structure, the materials involve single crystals, polycrystals,

polymers or amorphous media. The devices take form of one dimensional planar wave-

guides, rectangular waveguides, channel waveguides, periodic structures, optical fibers

with circular or elliptical cross-sections, optical fibers with structured profiles (photonic

crystal fibers).

1.3 Three basic ideas of integrated optoelectronics

The basic ideas of integrated optics involve:

(1)The use of thin film technology for the fabrication of optical elements.

(2) Replacement of diverging Gaussian beams by guided waves in analogy with microwave

circuits.

(3) Integration of optical elements on a common substrate in analogy with microelectronics.

1.4 Three main areas of activity

The research in integrated optoelectronics is focused on the following areas.

(1) The first one develops new materials using approaches of quantum physics and physics

of condensed matter.

(2) The second one studies electromagnetic wave processes including the wave propagation

in periodic nanostructures.

(3) The third one assembles optoelectronic devices into systems (system architecture in

optical networking).

At present, the main interest is devoted to optical waves in nanostructures, photonic

crystals, plasmon waveguiding, and photonic crystal fibers.

4M. J. R. Heck et al., Hybrid Silicon Photonics ...,IEEE J. Sel. Top. Quantum Electron. 17, 333–346

(2011).
5P. Berini, Long range surface plasmon polaritons, Adv. Optics & Photonics 1, 484-588 (2009).
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1.5 Optical fibres

A systematic demand on the volume and speed of data carried with electromagnetic waves

requires an increase in carrier frequencies from radio waves and microwaves towards the

optical region. The transfer of optical waves, in particular to high distances is performed

by optical fibers of circular cross section.6 The optical fibers technology has developed

since sixties of twenty century and starts from extremely high purity silicon oxide. The

optimal cross section is controlled by precise doping during fiber pulling. The attenuation

in these high technology fibers is much lower than those in optical materials employed in

the best optical devices. Long distance optical fiber communications employs wavelengths

of 1.3 µm and 1.55 µm corresponding to the attenuation and dispersion minima, respec-

tively. The attenuation is evaluated in decibels as a logarithm of the base 10 evaluated

for a ratio of the input optical power, Pin , to the output optical power, Pout , multiplied

the factor of ten,

NdB = 10 log10

Pin

Pout

(1.1)

The attenuation per 1 km represents the basic optical fiber parameter. In particular, for

the attenuation per 1 km in the fiber of the highest quality is as low as,

NdB/km = 0.1dB/km (1.2)

the output power at the 1 km distance becomes

Pin

Pout

= 100.01 ≈ 1.0233 (1.3)

e.g. on the 1 km distance

Pout ≈ 0.977Pin (1.4)

less than 2.3 % of the power is lost.

At the distance of dkm km the power attenuation in decibels (dB) becomes

NdB = NdB/km × dkm (1.5)

The attenuation of 3 dB corresponds to the decrease of the the output power to the half

of the input power

3dB = 10 log10

Pin

Pout

0.30103 = log10 2 ≈ log10

Pin

Pout

6R. Olshansky, Propagation in glass optical waveguides, Rev. Mod. Phys. 51, 341–367 (1979)
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Assuming NdB/km = 0.1 dB , this decrease takes place on the distance of 30 km. At

NdB/km = 0.1 dB and dkm = 50 km

NdB = 10 log10

Pin

Pout

= 5 dB (1.6)

corresponding to a power ratio,

Pin

Pout

= 100,5 =
√

10 ≈ 3.162 (1.7)

giving

Pout ≈ 0.316Pin (1.8)

At the 50 km distance the fiber transfers 31.6 % of the input power. The 50 km distance

is chosen as a distance between amplifiers in submarine optical fibers.



Chapter 2

Principle of dielectric waveguides

2.1 Thin film interference

A detailed description of the wave propagation in dielectric structures may be rather

complicated. Nevertheless, the basic principle can be explained using elementary con-

siderations on the uniform plane wave interference in a planar one dimensional structure

consisting of a thin film sandwiched between a substrate and a cover.1 The cover occupies

the half space above the film characterized by a real index of refraction, nc. Often, the

cover is ambient air with nc = 1 . The film is characterized by the real index of refraction

nf , and the substrate characterized by ns fills the half space below the film.

The problem geometry is chosen as follows. The interface between the cover and the

film is situated in the plane x = 0 of the Cartesian coordinate system with the positive

x axis directed to the cover half space. The interface between the film and substrate

is situated in the plane x = −h (Figure 2.1). We assume the existence of two pairs

of uniform plane waves linearly polarized with the electric field vectors perpendicular

or parallel to the plane of incidence (perpendicular to the unit vector ŷ in each of these

regions. The waves display the normal components of propagation vectors, kl , of different

signs

kl = nl
ω

c
(ẑ sin θl ± x̂ cos θl) , 0 ≤ θl <

π

2
(2.1)

where l = c , f , s . The plane of incidence which contains kl is defined by the Cartesian

unit vectors ẑ and x̂ , i.e., the plane of incidence normal coincides with ŷ.

The angles θl stand for the angles θc , θf , and θs , between kc , kf , and ks and the

interface normal (here x̂), respectively. The angular frequency and the speed of light

1D. Marcuse, Light Transmission Optics, Van Nostrand Reinhold Company, New York 1972, H. Ko-

gelnik, Theory of Dielectric Waveguides, in T. Tamir, ed. Integrated Optics, Springer Verlag, Berlin 1975,

D. Marcuse, Theory of Dielectric Optical Waveguides, Academic Press, New York and London 1974.

7
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x̂

θc θc

θs

nf

nc

h

ns

θf

z

x

O�
Figure 2.1: Multiple reflections in a dielectric thin film of a thickness, h , characterized by a

real index of refraction, nf , sandwiched between a dielectric cover characterized by a real index

of refraction, nc , and a dielectric substrate characterized by a real index of refraction, ns . The

angles between the propagation vectors and the unit vector x̂ perpendicular to the interface

planes in the cover, the film and the substrate are denoted as θc , θf , and θs , respectively.

in a vacuum are denoted as ω and c , respectively. These are related with the vacuum

wavelength, λvac by the relation,

2π

λvac

=
ω

c
(2.2)

The signs in Eq. (2.1) distinguish the waves with the propagation vector x-components

parallel or anti-parallel to x̂. All kl are restricted to the zx plane normal to ŷ. The

magnitudes of propagation vectors, kl = nl
ω

c
(ẑ sin θl ± x̂ cos θl) are given by

|kl| =
ω

c
nl (2.3)

Fields of these traveling waves will be taken proportional to an exponential function with

an argument imaginary pure

exp [j (ωt− kl · r)] = exp
[
j
(
ωt− ω

c
nlz sin θl ∓

ω

c
nlx cos θl

)]
(2.4)

For example, the electric field of the incident wave, Ei , in the cover region, c , with the

propagation vector, k(in)
c = nc

ω

c
(ẑ sin θc − x̂ cos θc) , traveling towards the c− f interface

is proportional to

Ei ∝ exp
[
j
(
ωt− ω

c
ncz sin θc +

ω

c
ncx cos θc

)]
(2.5)
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The electric field of the reflected wave, Er , in the cover region, c , with the propaga-

tion vector k(refl)
c = nc

ω

c
(ẑ sin θc + x̂ cos θc) , i.e. traveling out of the c − f interface is

proportional to

Er ∝ exp
[
j
(
ωt− ω

c
ncz sin θc −

ω

c
ncx cos θc

)]
(2.6)

The account of the medium linearity and Snell law

nc sin θc = nf sin θf = ns sin θs (2.7)

(the conservation of the propagation vector components of the incident, reflected and

transmitted waves parallel to the interface plane) gives

exp
[
j
(
ωt− ω

c
nlz sin θl

)]
, (2.8)

i.e., an invariant formed by the product of sin θl and the real index of refraction, nl for

the media l = c, f, s .

To simplify the problem, let us assume that the electric field amplitude of the wave

traveling from the substrate towards the s−f interface is zero. For the sake of conciseness,

we denote the phase increment corresponding to a single traverse across the film as

φf =
ω

c
nfh cos θf (2.9)

The phase increment is maximum at the normal incidence where θf = 0 . The ratio of the

total electric field of reflected waves, Er , to the electric field of the incident wave, Ei , in

the cover region c becomes

Er
Ei

= rcf +
(
tcf e−jφf rfs e−jφf tfc + tcf e−jφf rfs e−jφf rfc e−jφf rfs e−jφf tfc + . . .

)
(2.10)

where the Fresnel transmission and reflection coefficient for the interface between the

entrance medium, c (cover), and the film f are denoted as rcf and tcf , respectively, for

the waves incident from the cover region c and as rfc and tfc for the waves incident from

the film region, f . In a similar way, we denote the Fresnel transmission and reflection

coefficient for the interface between the film, f , and the exit medium (substrate), s , as

rfs and tfs , respectively for the waves traveling from the film region, f , towards the

interface s− f .2

2The transmission coefficient tfs would be taken into account in the analysis of the waves transmitted

to the substrate.
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2.1.1 Fresnel equations

Fresnel equations below the critical angle of incidence

The present analysis employs reflection and transmission coefficients at planar interface

between linear isotropic and homogeneous (LIH) media. These are given by Fresnel

equations for the electric field amplitude ratios of reflected and transmitted waves with

respect to that of the incident wave. The Fresnel reflection and transmission coefficients

for the planar waves with TE polarization (i.e., with the linearly polarized electric field

perpendicular to the plane of incidence) and those with TM polarization (i.e., with the

linearly polarized magnetic field perpendicular to the plane of incidence) pertinent to a

planar interface between nonmagnetic LIH media 1 and 2 become3

r
(TE)
12 =

n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

=
n1 cos θi −

(
n2

2 − n2
1 sin2 θi

)1/2

n1 cos θi +
(
n2

2 − n2
1 sin2 θi

)1/2
(2.11a)

t
(TE)
12 = 1 + r

(TE)
12 =

2n1 cos θi
n1 cos θi + n2 cos θt

=
2n1 cos θi

n1 cos θi +
(
n2

2 − n2
1 sin2 θi

)1/2

(2.11b)

r
(TM)
12 =

n2 cos θi − n1 cos θt
n2 cos θi + n1 cos θt

=
n2

2 cos θi − n1n2 cos θt
n2

2 cos θi + n1n2 cos θt

=
n2

2 cos θi − n1

(
n2

2 − n2
1 sin2 θi

)1/2

n2
2 cos θi + n1

(
n2

2 − n2
1 sin2 θi

)1/2
(2.11c)

t
(TM)
12 =

n1

n2

(
1 + r

(TM)
12

)
=

2n1 cos θi
n2 cos θi + n1 cos θt

=
2n1n2 cos θi

n2
2 cos θi + n1n2 cos θt

=
2n1n2 cos θi

n2
2 cos θi + n1

(
n2

2 − n2
1 sin2 θi

)1/2
(2.11d)

where θi and θt represent the angle of incidence and the angle of refraction, respectively.

In the last step, we have eliminated cos θt using Snell law. The Snell law requires the

continuity of the propagation vector components parallel to the interface,

ω

c
n1 sin θi =

ω

c
n2 sin θt (2.12)

Then n2 cos θt or n1 cos θt in Eqs. (2.11) can be expressed as

n2 cos θt =
(
n2

2 − n2
1 sin2 θi

)1/2
(TE) (2.13a)

n1 cos θt =
n1

n2

(
n2

2 − n2
1 sin2 θi

)1/2
(TM) (2.13b)

3The Fresnel equations in this form remain also valid for an interface of magnetic media which display

the same magnetic permeability.
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Critical angle of incidence

A wave traveling from a medium of higher index of refraction n1 and incident to an inter-

face with a medium of lower index of refraction n2 (i.e., n2 < n1) at an angle of incidence

higher than a certain critical angle is totally reflected. To include the phenomenon of

total reflection, the Fresnel formulae (2.11) require a generalization (Section 2.1.1). In

particular, at the critical angle of incidence θ
(crit)
i in the medium 1,

sin θ
(crit)
i = n2/n1 < 1 (2.14)

the cosine of the angle of refraction to the medium 2 follows from

n2 cos θ
(crit)
t =

(
n2

2 − n2
1 sin2 θ

(crit)
i

)1/2

= 0 = n2 cos
π

2
(2.15)

i.e., at the critical angle of incidence, the angle of refraction, θ
(crit)
t , is equal to π/2 ,

θ
(crit)
t =

π

2

Refracted waves travel parallel to the interface.

The substitutions of Eq. (2.15) into Eqs. (2.11) provide the values at the critical angle

of incidence θ
(crit)
i of the reflection and transmission coefficients for waves incident from

a medium characterized by an index of refraction, n1 , to the interface with a medium

characterized by an index of refraction, n2 < n1

r
(TE)
12

(
θ

(crit)
i

)
= 1 (2.16a)

t
(TE)
12

(
θ

(crit)
i

)
= 2 (2.16b)

r
(TM)
12

(
θ

(crit)
i

)
= 1 (2.16c)

t
(TM)
12

(
θ

(crit)
i

)
= 2

n1

n2

(2.16d)

Reflection above the critical angle of incidence

We wish to find the dependence of phase of reflection coefficient on the angle of incidence

above the critical angle of incidence. We consider a planar interface between two LIH

media characterized by real indices of refraction n1 a n2 , at the condition n1 > n2 . The

interface is situated in the plane normal to the x axis of a Cartesian coordinate system.

The unit vector x̂ normal to the interface plane points from the medium of higher

index of refraction, n1 , to the medium of lower index of refraction, n2 . A plane wave

from the medium of n1 impinges at the interface at an angle of incidence, θi , greater than

the critical angle for total reflection, θ
(crit)
12 = arcsin(n2/n1) , i.e., θi > θ

(crit)
12 . A plane wave

defined by its propagation vector

ki = k1 (x̂ cos θi + ẑ sin θi) =
ω

c
n1 (x̂ cos θi + ẑ sin θi) ,
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propagates with an incident electric field

Ei = E0i exp [j (ωt− ki · r)]

= E0i exp [jωt− jk1 (x̂ cos θi + ẑ sin θi) · (x̂x+ ŷy + ẑz)]

= E0i exp [jωt− jk1 (x cos θi + z sin θi)] (2.17a)

The incident wave produces a reflected wave defined by a propagation vector

kr = k1 (−x̂ cos θi + ẑ sin θi) =
ω

c
n1 (−x̂ cos θi + ẑ sin θi)

characterized by a reflected electric field

Er = E0r exp [j (ωt− kr · r)]

= E0r exp [jωt− jk1 (−x̂ cos θi + ẑ sin θi) · (x̂x+ ŷy + ẑz)]

= E0r exp [jωt− jk1 (−x cos θi + z sin θi)] (2.17b)

and a transmitted wave with a propagation vector kt = x̂ktx + ẑktz characterized by a

transmitted electric field

Et = E0t exp [j (ωt− kt · r)]

= E0t exp [jωt− j (ktxx+ ktzz)] . (2.17c)

The propagation constants of the incident and reflected waves, ki and kr are the same,

i.e., ki = kr = k1 = n1(ω/c) , that of the transmitted wave is given by kt = k2 = n2(ω/c) .

The propagation vector components parallel to the planar interface at the interface are

conserved (Snell law) and amount kiz = ẑn1(ω/c) sin θi . The normal component of the

incident propagation vector is simply kix = x̂n1(ω/c) cos θi . That of the reflected wave

is of opposite orientation, i.e., krx = −x̂n1(ω/c) cos θi . The magnitude of the normal

component of the transmitted propagation vector follows from the equation

k2
tx = k2

t − k2
tz =

(ω
c

)2 (
n2

2 − n2
1 sin2 θi

)
<
(ω
c

)2 (
n2

2 − n2
1 sin2 θ

(crit)
12

)
= 0 .

(2.18)

Above the critical angle, θi > θ
(crit)
12 , the scalar product ktx · x̂ = ktx becomes imaginary

pure. We get

ktx = ±j
ω

c

(
n2

1 sin2 θi − n2
2

)1/2

(2.19)

where
(
n2

1 sin2 θi − n2
2

)1/2 ≥ 0 . The transmitted wave traveling with the normal compo-

nent of the propagation vector oriented along positive x̂ (with increasing x coordinate),
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must be exponentially decaying with the increasing x . As a consequence, we have to

choose

ktx = −jx̂
ω

c

(
n2

1 sin2 θi − n2
2

)1/2
(2.20)

to get for the scalar product

ktx · x̂x = ktxx = −j
ω

c

(
n2

1 sin2 θi − n2
2

)1/2
x (2.21)

In the electromagnetic wave theory of dielectric waveguides, the amplitude of the normal

propagation vector component,

|ktx| =
ω

c

(
n2

1 sin2 θi − n2
2

)1/2
=

2π

λvac

(
n2

1 sin2 θi − n2
2

)1/2
(2.22)

is defined as a transverse attenuation constant, γ . In the chosen configuration, the vectors

ktx a x̂ (i.e. for the wave propagating in the positive direction of +x̂) are parallel with

same orientation. Based on these considerations, the transmitted, so called evanescent,

wave can be characterized by its electric field,

Et = E0t exp
[
j
(
ωt− n1

ω

c
z sin θi

)]
exp

−ω
c

(
n2

1 sin2 θi − n2
2

)1/2︸ ︷︷ ︸
>0

x


(2.23)

The value |ktx|−1 corresponds to the penetration depth of the evanescent wave into the

medium with n2 at the total reflection at the interface of media characterized by n1 > n2.

The penetration depth is denoted as δ(12)

δ(12) =
1

|ktx|
=

λvac

2π
(
n2

1 sin2 θi − n2
2

)1/2
. =

1
ω

c

(
n2

1 sin2 θi − n2
2

)1/2
(2.24)

It is minimal at θi → π/2 and goes to the infinity at θ
(crit)
i .

Let us list the propagation vectors of these three waves

ki = k1 (x̂ cos θi + ẑ sin θi) (2.25a)

kr = k1 (−x̂ cos θi + ẑ sin θi) (2.25b)

kt = −jx̂
ω

c

(
n2

1 sin2 θi − n2
2

)1/2
+ ẑk1 sin θi (2.25c)

and the corresponding scalar product in the exponential factors

ki · r = k1 (x cos θi + z sin θi) (2.26a)

kr · r = k1 (−x cos θi + z sin θi) (2.26b)

kt · r = −jx
ω

c

(
n2

1 sin2 θi − n2
2

)1/2
+ zk1 sin θi (2.26c)
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n2

n1

θi θi

x̂

x

0 zN
Figure 2.2: Reflection at the upper boundary of the film.

n1

n2

θi θi

x̂

x

0 z
O
Figure 2.3: Reflection at the lower boundary of the film.

In the analysis of total internal reflections at the upper and lower interface in a film of

the refractive index n1 , sandwiched between media of lower indices of refraction, n2 < n1

it is useful to consider another configuration, the configuration with an opposite orien-

tation of the propagation vector component normal to the interface. So far, we have

analyzed the reflection at the “upper” interface boundary (Figure 2.2). At the“lower”
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interface boundary (Figure 2.3) in the same coordinate system, the unit vector x̂ , normal

to the interface plane will be of opposite orientation, i.e., x̂ will oriented from the medium

of a lower index of refraction, n2 , to the medium of higher index of refraction, n1 > n2 .

The propagation vectors from Eqs. (2.25) are transformed to

ki = k1 (−x̂ cos θi + ẑ sin θi) (2.27a)

kr = k1 (x̂ cos θi + ẑ sin θi) (2.27b)

kt = jx̂
ω

c

(
n2

1 sin2 θi − n2
2

)1/2
+ ẑk1 sin θi (2.27c)

and the corresponding scalar products in Eqs. (2.26) become

ki · r = k1 (−x cos θi + z sin θi) (2.28a)

kr · r = k1 (x cos θi + z sin θi) (2.28b)

kt · r = jx
ω

c

(
n2

1 sin2 θi − n2
2

)1/2
+ zk1 sin θi (2.28c)

The transmitted evanescent wave, previously expressed by Eq. (2.23), now traveling in

the direction of decreasing x < 0 should be expressed as

Et = E0t exp
[
j
(
ωt− n1

ω

c
z sin θi

)]
exp

ω
c

(
n2

1 sin2 θi − n2
2

)1/2︸ ︷︷ ︸
>0

x


(2.29)

The two cases may be involved in a single equation using the expression with the absolute

value of x , i.e. |x|

Et = E0t exp
[
j
(
ωt− n1

ω

c
z sin θi

)]
exp

−ω
c

(
n2

1 sin2 θi − n2
2

)1/2︸ ︷︷ ︸
>0

|x|


(2.30)

2.1.2 Fresnel equations above the critical angle of incidence

At a planar interface of nonmagnetic media (or at a planar interface of media characterized

by a common magnetic permeability) of the indices of refraction n1 > n2 the Fresnel

equations for wave reflection above the critical angle assume the form (independent on

the choice of a coordinate system for the incident wave and the interface) given by

r
(TE)
12 =

n1 cos θi + j
(
n2

1 sin2 θi − n2
2

)1/2

n1 cos θi − j
(
n2

1 sin2 θi − n2
2

)1/2
(2.31a)

r
(TM)
12 =

n2
2 cos θi + jn1

(
n2

1 sin2 θi − n2
2

)1/2

n2
2 cos θi − jn1

(
n2

1 sin2 θi − n2
2

)1/2
(2.31b)
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where the incident waves traveling to the interface from the medium of higher index of

refraction, n1 , at an angle of incidence with respect to the interface normal of θi > θcrit
12 .

In Eqs. (2.11), we have replaced(
n2

2 − n2
1 sin2 θi

)1/2 → −j
(
n2

1 sin2 θi − n2
2

)1/2
.

From Eqs. (2.31), it is obvious that
∣∣∣r(TE)

12

∣∣∣ = 1 a
∣∣∣r(TM)

12

∣∣∣ = 1 , corresponding to the total

internal reflection . We employ the exponential representation

r
(TE)
12 = e2jφ

(TE)
12 , φ

(TE)
12 = arctan

(
n2

1 sin2 θi − n2
2

)1/2

n1 cos θi
(2.32a)

r
(TM)
12 = e2jφ

(TM)
12 , φ

(TM)
12 = arctan

n2
1

n2
2

(
n2

1 sin2 θi − n2
2

)1/2

n1 cos θi
(2.32b)

The angles 2φ
(TE)
12 and 2φ

(TM)
12 represent phase shifts of the incident planar waves traveling

from the medium characterized by n1 with TE and TM polarization, respectively, at

the total reflection at the interface with the medium of a lower index of refraction n2

(n2 < n1). The curves of φ
(TE)
12 and φ

(TM)
12 dependent on the angle of incidence are

illustrated in Figure 2.4. The ratio n1/n2 = 3, 6 corresponds to the interface between

a GaAS semiconductor and air. The ratio n1/n2 = 2 illustrates the situation at the

interface between an LiNbO3 ionic crystal and air. Further, the ratio n1/n2 = 1, 4

corresponds to the interface between a fused quartz (amorphous SiO2 ) and air. Finally,

the ratio n1/n2 = 1, 01 illustrate the situation at the interface between the core and

cladding in optical fibers or at at an interface in semiconductor heterostructures GaAlAs

considered for the monolithic integrated optoelectronics (n1 = 3, 6 a n2 = 3, 55 ).

2.1.3 Sum of multiple reflection series

The expression in the parentheses in Eq. (2.10) represent geometric series
∑∞

n−1 a1q
n−1

Er
Ei

= rcf +
(
tcfrfstfc e−2jφf

) [
1 +

(
rfcrfs e−2jφf

)
+
(
rfcrfs e−2jφf

)2
+ . . .

]
(2.33)

At the condition of convergence, i.e. for q < 1 , the sum is given by

s =
∞∑
n=1

a1q
n−1 =

a1

1− q

Here

a1 = tcfrfstfce
−2jφf

q = rfcrfse
−2jφf
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0◦

φ
(TE)
12 , φ

(TM)
12

90◦
0

θi

TM TE

TM TE

TM TM TE

90◦

n1/n2 = 3.6

2, 0

1.4

1.1

1.01

'
Figure 2.4: Phase half shifts φ

(TE)
12 and φ

(TM)
12 above the critical angle of incidence at the internal

total reflection as functions of the angle of incidence, θi , for several ratios of indices of refrac-

tion, n1/n2 . At the critical angle, d
[
φ

(TE)
12 (θi)

]
/dθi → ∞ and d

[
φ

(TM)
12 (θi)

]
/dθi → ∞ . At

θi = 90◦ , d
[
φ

(TE)
12 (θi)

]
/dθi equals n1

(
n2

1 − n2
2

)−1/2
=
µ2

µ1

n1(
n2

1 − n2
2

)1/2 and d
[
φ

(TM)
12 (θi)

]
/dθi

equals n2
2n
−1
1

(
n2

1 − n2
2

)−1/2
=
ε2

ε1

n1(
n2

1 − n2
2

)1/2 .

and according to Eq. (2.9)

φf =
ω

c
nfh cos θf

The global reflection coefficient of the planar system cover – film – substrate will be

given as a ratio of the electric field amplitude of the reflected wave, Er , and that of the
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incident wave, Ei

Er
Ei

= rcf +
tcf tfcrfse

−2jφf

1− rfcrfse−2jφf

=
rcf
(
1− rfcrfse−2jφf

)
+ tcf tfcrfse

−2jφf

1− rfcrfse−2jφf

=
rcf + (tcf tfc − rcfrfc) rfse−2jφf

1− rfcrfse−2jφf

We account for the following identity which follows e.g., from the Fresnel formulae

tcf tfc − rcfrfc = 1 , rcf = −rfc

Then

Er
Ei

=
rcf + rfse

−2jφf

1− rfcrfse−2jφf
(2.34)

where |rcf | ≤ 1 and |rfs| ≤ 1 .

Alternatively, we could start from the analysis of the wave transmitted into the sub-

strate. The ratio of the transmitted electric field amplitude, Et , to that of the incident

electric field, Ei , would be given by

Et
Ei

=
tcf tfse

−jφf

1− rfcrfse−2jφf
(2.35)

For the present purpose, it is relevant that the form of the denominator in Eq. (2.34) and

in Eq. (2.35) is the same.

2.2 Guided waves in planar structures

2.2.1 Eigenvalue equation

The eigenvalue equation, i.e., the condition for the guided eigenmodes in planar (i.e.,

unidimensional, 1D) systems formed by a cover, c , a thin film, f , and a substrate, s ,

is given by poles of the function 1 − rfcrfse−2jφf , entering the denominator on the right

hand side in Eqs. (2.34) and (2.35),

1− rfcrfse−2jφf = 0 (2.36)

It can be satisfied above the higher of the critical angles critical angles θ
(crit)
fc and θ

(crit)
fs

for the total reflection at the f -c or f -s interface, at the conditions nc < nf and ns < nf ,

θ
(crit)
fc = arcsin

nc
nf

, (2.37a)



2.2. GUIDED WAVES IN PLANAR STRUCTURES 19

θ
(crit)
fs = arcsin

ns
nf

. (2.37b)

The angle, θf , spanned by the propagation vector, in the film, kf , and the interface

normal is restricted to the range

θf > θ
(crit)
fc = arcsin

nc
nf

(2.38a)

or

θf > θ
(crit)
fs = arcsin

ns
nf

(2.38b)

whichever is narrower. Then |rcf | = 1 and |rfs| = 1 and the Fresnel reflection coefficients

can be expressed in exponential forms as in Eqs. (2.32)

rfc = e2jφfc

rfs = e2jφfs

The waveguiding condition can be transformed into the form

1

rfc

1

rfs
e2jφf = 1

e2jφf e−2jφfce−2jφfs = 1 .

After the substitution for φf according to Eq. (2.9), i.e., φf =
ω

c
nfh cos θf , we rewrite

the condition as

exp
[
2j
(ω
c
nfh cos θf − φfc − φfs

)]
= exp (2jνπ)

where, in general, ν = 0,±1,±2, . . . , i.e., ν is an integer. The comparison of the expo-

nents provides the waveguiding condition in a convenient form

ω

c
nfh cos θf − φfc − φfs = νπ , ν = 0, 1, 2, 3, . . . (2.39a)

restricted, for the sake of simplicity, to non negative ν . Here, the projection kf · x̂ =
ω

c
nf cos θf represents a transverse component of the propagation vector. In the elec-

tromagnetic field theory of guided waves in dielectric structures, this will be defined as

transverse propagation constant and denoted by a symbol κ . Waveguiding modes are

distinguished by the integer ν .

In terms of the vacuum wavelength, λvac = ω/c , the eigenvalue equation representing

the waveguiding condition assumes the final conventional form

2πh

λvac

nf cos θf − φfc − φfs = νπ , ν = 0, 1, 2, 3, . . . (2.39b)
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The waveguiding condition is valid for each eigen polarization, i.e., for either TE or TM,

separately,

ω

c
nfh cos θf − φ(TE)

fc − φ(TE)
fs = νπ , ν = 0, 1, 2, 3, . . . (2.40a)

ω

c
nfh cos θf − φ(TM)

fc − φ(TM)
fs = νπ , ν = 0, 1, 2, 3, . . . (2.40b)

The simultaneous waveguiding condition takes the form of product,(
1− r(TE)

fc r
(TE)
fs e−2jφf

)(
1− r(TM)

fc r
(TM)
fs e−2jφf

)
= 0 (2.41)

The TE and TM waves satisfying the waveguiding condition are called (eigen) TE modes

and (eigen) TM modes .

2.2.2 Effective guide index

The effective guide index is defined by the relation

N = nf sin θf (2.42)

where nf and θf are the index of refraction in the film and the angle spanned by the

propagation vector and the normal to the film interfaces, respectively. We denote the

indices of refraction of cover and the substrate as nc resp. ns , respectively. The effective

guide index is confined to the smaller of the intervals nc < N < nf and ns < N < nf .

In terms of N , the phase half shifts at the total internal reflection given in Eqs. (2.32)

become

φ
(TE)
fc = arctan

(
n2
f sin2 θf − n2

c

)1/2

nf cos θf
= arctan

(N2 − n2
c

n2
f −N2

)1/2


(2.43a)

φ
(TM)
fc = arctan

n2
f

n2
c

(
n2
f sin2 θf − n2

c

)1/2

nf cos θf
= arctan

n2
f

n2
c

(
N2 − n2

c

n2
f −N2

)1/2


(2.43b)

φ
(TE)
fs = arctan

(
n2
f sin2 θf − n2

s

)1/2

nf cos θf
= arctan

(N2 − n2
s

n2
f −N2

)1/2


(2.43c)

φ
(TM)
fs = arctan

n2
f

n2
s

(
n2
f sin2 θf − n2

s

)1/2

nf cos θf
= arctan

n2
f

n2
s

(
N2 − n2

s

n2
f −N2

)1/2


(2.43d)
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We denote the film thickness by h and replace ω/c = 2π/λvac . The waveguiding conditions

for eigen TE and TM modes given in Eqs. (2.40) can be rearranged. For the TE modes,

2πh

λvac

(
n2
f −N2

)1/2 − arctan

(N2 − n2
c

n2
f −N2

)1/2
− arctan

(N2 − n2
s

n2
f −N2

)1/2
 = νπ

(2.44a)

and for the TM modes,

2πh

λvac

(
n2
f −N2

)1/2 − arctan

(nf
nc

)2
(
N2 − n2

c

n2
f −N2

)1/2


− arctan

(nf
ns

)2
(
N2 − n2

s

n2
f −N2

)1/2
 = νπ

(2.44b)

Using

arctanx+ arctan y = arctan
x+ y

1− xy
, (2.45)

in Eqs. (2.44), we get for TE modes,

arctan

(N2 − n2
c

n2
f −N2

)1/2
+ arctan

(N2 − n2
s

n2
f −N2

)1/2


= arctan

(N2 − n2
c

n2
f −N2

)1/2
+

(N2 − n2
s

n2
f −N2

)1/2


1−

(N2 − n2
c

n2
f −N2

)1/2
(N2 − n2

s

n2
f −N2

)1/2


= arctan


(
n2
f −N2

)1/2
[
(N2 − n2

s)
1/2

+ (N2 − n2
c)

1/2
]

(
n2
f −N2

)
− (N2 − n2

c)
1/2 (N2 − n2

s)
1/2

 ,

(2.46a)
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and for the TM modes,

arctan

(nf
nc

)2
(
N2 − n2

c

n2
f −N2

)1/2
+ arctan

(nf
ns

)2
(
N2 − n2

s

n2
f −N2

)1/2


= arctan

(nf
nc

)2
(
N2 − n2

c

n2
f −N2

)1/2
+

(nf
ns

)2
(
N2 − n2

s

n2
f −N2

)1/2


1−

(nf
nc

)2
(
N2 − n2

c

n2
f −N2

)1/2
(nf

ns

)2
(
N2 − n2

s

n2
f −N2

)1/2


= arctan

n
2
f

(
n2
f −N2

)1/2
[
n2
c (N2 − n2

s)
1/2

+ n2
s (N2 − n2

c)
1/2
]

n2
cn

2
s

(
n2
f −N2

)
− n4

f (N2 − n2
c)

1/2 (N2 − n2
s)

1/2

 .

(2.46b)

Equations (2.44) can then be expressed for TE modes as,

2πh

λvac

(
n2
f −N2

)1/2 − arctan


(
n2
f −N2

)1/2
[
(N2 − n2

s)
1/2

+ (N2 − n2
c)

1/2
]

(
n2
f −N2

)
− (N2 − n2

c)
1/2 (N2 − n2

s)
1/2

 = νπ

(2.47a)

and for the TM modes,

2πh

λvac

(
n2
f −N2

)1/2 − arctan



(
n2
f −N2

)1/2

n2
f

[
(N2 − n2

s)
1/2

n2
s

+
(N2 − n2

c)
1/2

n2
c

]
(
n2
f −N2

)
n4
f

− (N2 − n2
s)

1/2

n2
s

(N2 − n2
c)

1/2

n2
c


= νπ .

(2.47b)

2.2.3 Ray model

Alternatively, the waveguiding condition in Eq. (2.39) in three planar (1D) ideally dielec-

tric (i.e., lossless) media, cover – film – substrate system, characterized by real indices of

refraction in the cover, nc , in the film, nf , and in the substrate, ns in Eq. (2.39) can be

deduced from the considerations on plane waves with defined propagation vectors using

so called ray model, The nc , nf , and ns satisfy nc < nf and ns < nf . We shall further

assume nc < ns . The refractive index profile is determined by

nc < ns < nf (2.48)
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nc = 1.0

ns = 1.9

nf = 2.2h θf

θc

θs

K
Figure 2.5: Radiation mode at θf = 25◦ . After Herwig Kogelnik, Theory of Dielectric Wave-

guides in Integrated Optics, Editor: Theodor Tamir, Topics in Applied Physics, Vol. 7, Springer

Verlag, Berlin, Heidelberg, New York, 1975.

The critical angles for total internal reflection are given by Eqs. (2.37)

θ
(crit)
fc = arcsin

nc
nf

(2.49a)

θ
(crit)
fs = arcsin

ns
nf

(2.49b)

We again choose the Cartesian coordinate system with the x axis normal to the interface

planes. The c–f interface is situated in the plane x = 0 and the interface f–s is situated

in the plane x = −h as in Figure 2.1. The cover fills the half space x > 0 the film is

confined to the region 0 > x > −h and the substrate occupies the half space x < −h .

The propagation vectors of the plane waves with either TE or TM eigen polarizations are

confined to the plane of incidence normal to the y axis.

Continuous spectrum of radiation modes

We observe the transmission of a plane wave propagating in the substrate half space

towards the interface substrate – film at an angle of incidence, θs , spanned by its propa-

gation vector and the interface normal, smaller than the critical angles for total internal

reflection,

θf < θ
(crit)
fc < θ

(crit)
fs (2.50)
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The wave after traversing the substrate – film interface is refracted at an angle θf < θs

and leaves the film – cover interface at an angle θc > θf . The angular spectrum given

by the condition (2.50) is continuous and represents the spectrum of radiation modes.

The situation is illustrated in Figure 2.5.

nc = 1.0

ns = 1.9

nf = 2.2h
θf

θf θf
θf

θsθs

L
Figure 2.6: Substrate mode, θf = 50◦ . After Herwig Kogelnik, Theory of Dielectric Waveguides

in Integrated Optics, Editor: Theodor Tamir, Topics in Applied Physics, Vol. 7, Springer Verlag,

Berlin, Heidelberg, New York, 1975.

Continuous spectrum of substrate modes

Now we consider a plane wave traveling from the substrate half space to the substrate –

film interface and propagating in the film at an angle θf smaller than the critical angle at

the interface film – substrate but greater than the critical angle at film – cover interface,

θ
(crit)
fc < θf < θ

(crit)
fs (2.51)

The wave arrives at the substrate – film interface at an angle θs and becomes refracted at

an angle θf < θs . After being totally reflected it returns back to the substrate after passing

the film – substrate interface. The angular spectrum of θf according to the condition

(2.51) is again continuous and defines the spectrum of substrate modes. The situation is

illustrated in Figure 2.6.
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nc = 1.0

ns = 1.9

nf = 2.2

h

0 z

−h

x̂

x

θf

θf θf
θf θfM

Figure 2.7: Guided mode, θf = 65◦ . After Herwig Kogelnik, Theory of Dielectric Waveguides

in Integrated Optics, Editor: Theodor Tamir, Topics in Applied Physics, Vol. 7, Springer Verlag,

Berlin, Heidelberg, New York, 1975.

Discrete spectrum of guided modes

We now consider the existence of plane waves inside the film characterized by propagation

vectors spanning with the interface normal (parallel to the unit vector, x̂) an angle θf ,

greater than the critical angles for the total internal reflection at both the film – cover

interface and at the film – substrate interface,

θ
(crit)
fc < θ

(crit)
fs < θf (2.52)

At a fixed value of propagation vector component parallel to the interface planes and to

the waveguide axis (chosen along the z axis) of magnitude β , i.e., ẑβ = ẑnf
ω

c
sin θf ,

the corresponding propagation vector component normal to the interface planes of the

magnitude κ assumes the values ±x̂κ = ±x̂nf
ω

c
cos θf . Here, β denotes the longitudinal

propagation constant related to the effective guide index N from Section 2.2.2 by the

relation β = (ω/c)N . Then κ will denote the transverse propagation constant .

In the film, there exist two waves, one traveling to the film – cover interface

E↑ = E↑0 exp
[
j
(
ωt− nf

ω

c
z sin θf − nf

ω

c
x cos θf

)]
(2.53a)

and another one traveling to the film substrate interface

E↓ = E↓0 exp
[
j
(
ωt− nf

ω

c
z sin θf + nf

ω

c
x cos θf

)]
(2.53b)

At constructive interference, the sum of these waves generates a guided mode infinite

along the z axis (Figure 2.7). To find the condition for the guided mode, we have to

account not only a phase shift across the film but also abrupt total internal reflection
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Figure 2.8: Graphical solution to the eigenvalue equation in a symmetric waveguide for the

fundamental mode ν = 0 at the wavelength λvac = 1.55µm . The film characterized by the

index of refraction n1 = 2.0 of the thickness h1 is sandwiched between media of the index of

refraction n2 = 1.5 . The horizontal axis represents the internal reflection angle, θ1 , in the film.

The solution for θ1 is given by an intersection of the curve for the phase shift across the film

(increasing with the increased film thickness, h1) , and the curve of the thickness independent

sum of half phase shifts φ
(TE)
12 or φ

(TM)
12 at the lower and upper interfaces.

phase changes at the interfaces. A wave characterized by the electric field, E↑ , traveling

to the interface at x = 0 and receiving a phase shift 2φfc transforms at the total internal

reflection into the wave characterized by the electric field E↓ ,

E↑0 exp (j2φfc) = E↓0 (2.54a)

The wave characterized by E↓ traveling to the interface x = −h and receiving a phase

shift 2φfs transforms into the wave characterized by E↑

E↓0 exp
[
j
(
−nf

ω

c
h cos θf

)]
exp (j2φfs) = E↑0 exp

[
j
(
nf
ω

c
h cos θf

)]
(2.54b)

An invariant factor exp
[
j
(
ωt− nf

ω

c
z sin θf

)]
on both sides of Eqs. (2.54) was removed.
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k↑ = x̂nf
ω

c
cos θf + ẑ nf

ω

c
sin θf (2.55a)

k↓ = −x̂nf
ω

c
cos θf + ẑ nf

ω

c
sin θf (2.55b)

The phase relations between the waves at the interface x = 0 and at the interface x = −h
expressed in Eqs. (2.54) form a homogeneous equation system,

E↑0 exp (j2φfc)− E↓0 = 0 (2.56a)

E↑0 exp
[
j
(
nf
ω

c
h cos θf

)]
− E↓0 exp

[
j
(
−nf

ω

c
h cos θf + 2φfs

)]
= 0

(2.56b)

The condition for nontrivial solutions to a homogeneous equation system requires the

zero determinant of the left hand side. In the present case of the equation system for the

amplitudes E↑0 and E↓0 the following determinant must vanish,∣∣∣∣∣∣ exp (j2φfc) −1

exp
[
j
(
nf
ω

c
h cos θf

)]
− exp

[
j
(
−nf

ω

c
h cos θf + 2φfs

)]
∣∣∣∣∣∣ = 0 (2.57)

After computing the determinant, we get

− exp
[
j
(
−nf

ω

c
h cos θf + 2φfc + 2φfs

)]
+ exp

[
j
(
nf
ω

c
h cos θf

)]
= 0

We divide the equation by the first term on the left hand side to get

exp
[
j
(

2nf
ω

c
h cos θf − 2φfc − 2φfs

)]
= 1

The comparison of the exponents leads to the already known eigenvalue equation, Eq. (2.39),

which expresses the so called transverse resonance condition ,

ω

c
nfh cos θf − φfc − φfs = νπ , ν = 0, 1, 2, 3, . . . (2.58)

The angular spectrum of θf consistent with Eq. (2.58) falling into the range (2.52) becomes

discrete. It form the spectrum of guided modes. The result is valid separately for the TE

and TM eigen polarizations as in Eqs. (2.40).

The eigenvalue equation for guided TE and TM modes was derived in several equi-

valent forms presented, e.g., in Eqs. (2.40) or (2.44). Its graphical solution is shown in

Figures 2.8 through 2.14. Figure 2.8 illustrates the solution to the eigenvalue equation for

the fundamental mode ν = 0 in a symmetric planar waveguide. The solutions for modes

ν > 0 are shown in Figure 2.9. The solutions for the fundamental TE and TM fundamen-

tal modes ν = 0 in an asymmetric planar waveguide are compared in Figure 2.10. Note

that the cut-off film thickness is higher for the TM mode than that for the TE mode.
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Table 2.1: Guided TE modes of the order ν at the vacuum wavelength λvac = 1 060 nm in

a dielectric planar waveguide consisting of a layer (ZnS) of the index of refraction, nf = 2.2899 ,

and of the thickness, h = 1 500 nm , sandwiched between an overlayer (air) of the index of

refraction, nc = 1.0 and a substrate (glass) of the index of refraction, ns = 1.5040 . The results

of the graphical solution to the eigenvalue equation (2.40a) in Figures 2.13 and 2.14 are expressed

in terms of the “zig-zag” angle θf spanned by the propagation vector and the normal to the

interfaces and in terms of the waveguide index, N = nf sin θf .

ν 0 1 2 3 4

θf 82.1◦ 74.1◦ 65.7◦ 56.9◦ 47.7◦

N 2.268 2.202 2.087 1.918 1.694

At the chosen film thickness, h = 1500 nm , and the vacuum wavelength λvac =

1 060 nm (Nd:YAG laser) the waveguide allows the propagation of modes in the range

0 ≤ ν ≤ 4 . The graphical solutions to eigenvalue equation for 0 ≤ ν ≤ 3 and 1 ≤ ν ≤ 4

along with the cut-off thicknesses are shown in Figures 2.11 and 2.12, respectively. The

eigenvalues of the “zig-zag” angles, θf , for TE and TM modes of the order 0 ≤ ν ≤ 3 and

1 ≤ ν ≤ 4 at the film thickness h = 1500 nm and the vacuum wavelength λvac = 1 060 nm

can be determined from the scales in Figures 2.13 and 2.14, respectively.

The waveguide in Figure 2.11 allows the propagation of the guided TE and TM modes

above the cut-off film thickness, h = 56 nm and h = 126 nm , respectively. The waveguide

remains a monomode one for the TE and TM modes up to the film thickness, h = 364 nm

and h = 432 nm , respectively. The TE and TM modes of the order ν = 2 become allowed

above h = 670 nm and h = 740 nm , respectively. For example, at an intermediate film

thickness, h = 906 nm , shown in the Figure 2.11, the waveguide still carries the TE and

TM modes ν = 0, 1, 2 , only.

In Figure 2.12, the guided TE and TM modes of the order ν = 3 start above the

film thickness, h = 976 nm and h = 1048 nm , respectively. The guided TE and TM

modes of the order ν = 4 start above the film thickness, h = 1280 nm and h = 1352 nm ,

respectively. At h = 1500 nm the modes of the order ν > 4 are forbidden. The results

of graphical solutions to the eigenvalue equation read from Figures 2.13 and 2.14 are

summarized for the TE modes in Table 2.1 and for the TM modes in Table 2.2.
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Table 2.2: Guided TM modes of the order ν at the vacuum wavelength λvac = 1 060 nm in a

dielectric planar waveguide consisting of a layer (ZnS) of the index of refraction, nf = 2.2899 ,

and of the thickness, h = 1 500 nm , sandwiched between an overlayer (air) of the index of

refraction, nc = 1.0 and a substrate (glass) of the index of refraction, ns = 1.5040 . The results

of the graphical solution to the eigenvalue equation (2.40b) in Figures 2.13 and 2.14 are expressed

in terms of the “zig-zag” angle θf spanned by the propagation vector and the normal to the

interfaces and in terms of the waveguide index, N = nf sin θf .

ν 0 1 2 3 4

θf 81.4◦ 72.8◦ 63.7◦ 54.2◦ 44.3◦

N 2.264 2.187 2.053 1.857 1.599

2.3 Modal dispersion

In a planar waveguide with a step like profile of the index of refraction, the central region

(film) is characterized by a uniform real index of refraction. The waves propagate along

the film as a sequence of total internal reflections at the film interfaces. The guided waves

of the same frequency may travel with different angles with respect to the interface normal

(greater than the critical angle for the total internal reflection). Because of the uniform

index of refraction in the film region, the waves travel different paths and also different

optical paths defined as a product of the geometrical path and the (uniform) index of

refraction. The optical paths for the waves traveling with the propagation vectors of

different inclinations and different angles of incidence are different. The waves traveling

at the angle of incidence close to the critical angle propagate with a nearly maximum

number of total reflections per unit length on the waveguide axis (conventionally parallel

to the Cartesian z axis) travel the longest path. On the other hand, the waves traveling

with the propagation vector close to the waveguide axis (close to the glancing incidence

angle) propagate with the shortest path. A fixed point on the waveguide axis is reached by

former waves in a longer time interval than by the latter waves. The incident rectangular

pulse formed by modes traveling with different velocities becomes distorted in a distant

point on the axis. The phenomenon, termed the modal distortion, increases with the

traveled distance.

The modal distortion can be corrected by replacing the step like refractive index profile

by a convenient graded profile. The best solution is represented by a profile characterized

by

n2 (x) = n2
s + 2ns∆n

[
cosh

( x
2h

)]−2

(2.59)

i.e., with a profile displaying a graded permittivity component proportional to a square
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of hyperbolic secant

sech x = (cosh x)−1 (2.60)

It is distinguished by an ideal suppression of modal distortion (Figure 2.15).

A strong suppression of modal distortion is already achieved in dielectric waveguides

with the central region displaying a permittivity profile proportional to the squared dis-

tance from the axis, i.e.,

n2 (x) = n2
f

[
1−

( x
2h

)2
]

(2.61)

This can be appreciated from the Mc Laurin development4 of the function

sech
( x

2h

)
=

[
cosh

( x
2h

)]−1

= 1− 1

2!

( x
2h

)2

+
5

4!

( x
2h

)4

− 61

6!

( x
2h

)6

+ . . . (2.62)

With the restriction to first terms of the development5 of
[
sech

( x
2h

)]2

[
sech

( x
2h

)]2

≈ 1−
( x

2h

)2

(2.63)

2.4 Normalized eigenvalue equation

The eigenvalue equation for planar dielectric waveguides for TE modes (2.40a) can be

transformed into a normalized form as a function of three parameters, i.e., a normal-

ized frequency-thickness product, V = V (ωh) , a normalized waveguide index, b , and an

asymmetry waveguide parameter a .6 We start from the eigenvalue equation for TE modes

(2.44a) in terms of the waveguide index, N ,

2πh

λvac

(
n2
f −N2

)1/2 − arctan

(N2 − n2
c

n2
f −N2

)1/2
− arctan

(N2 − n2
s

n2
f −N2

)1/2
 = νπ

(2.64)

where the effective waveguide index is related to the longitudinal propagation constant,

β , by the angle of refraction, θf , and the index of refraction in the film, nf . The film is

4f(x) = f(0) +
x

1!
f ′(0) +

x2

2!
f ′′(0) + · · ·+ xn

n!
f (n)(0) + . . .

5 d (coshx)
(2n)

dx
= coshx ,

d (coshx)
(2n−1)

dx
= sinhx , n = 1, 2, 3, . . . .

6Herwig Kogelnik, Theory of Dielectric Waveguides in Integrated Optics, Editor: Theodor Tamir,

Topics in Applied Physics, Vol. 7, Springer Verlag, Berlin, Heidelberg, New York, 1975.
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sandwiched between the half spaces characterized by the indices of refraction nc (cover)

and ns (substrate) restricted to nf > ns ≥ nc ,

β = N
ω

c
(2.65a)

N = nf sin θf (2.65b)

ns < N < nf (2.65c)

in agreement with Eqs. (2.42) and (2.48). The normalized frequency ω and thickness, h ,

product, so called V number is defined as

V =
ωh

c

(
n2
f − n2

s

)1/2
=

2πh

λvac

(
n2
f − n2

s

)1/2
, 0 < V <∞ (2.66a)

where λvac denotes the vacuum wavelength. The normalized waveguide index, b is defined

as

b =
N2 − n2

s

n2
f − n2

s

, 0 < b < 1 (2.66b)

At N → ns , normalized waveguide index, b → 0 , and the guiding disappears. The

asymmetry parameter, a , is defined as

a =
n2
s − n2

c

n2
f − n2

s

, 0 ≤ a <∞ (2.66c)

In a symmetric waveguide, where ns = nc , the asymmetry becomes zero, a = 0 . We

arrange the first term in the eigenvalue equation (2.64)

2πh

λvac

(
n2
f −N2

)1/2
=

2πh

λvac

(
n2
f −N2

)1/2

(
n2
f − n2

s

)1/2(
n2
f − n2

s

)1/2

=
2πh

λvac

(
n2
f − n2

s

)1/2︸ ︷︷ ︸
V

(
n2
f −N2

)1/2(
n2
f − n2

s

)1/2

= V

(
n2
f −N2

)1/2(
n2
f − n2

s

)1/2

= V

[
n2
f − n2

s − (N2 − n2
s)
]1/2(

n2
f − n2

s

)1/2

= V

[(
n2
f − n2

s

n2
f − n2

s

)
−

(
N2 − n2

s

n2
f − n2

s

)]1/2

= V (1− b)1/2 (2.67a)
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The second term in the eigenvalue equation (2.64) can be put in the form

− arctan

(N2 − n2
s

n2
f −N2

)1/2
 = − arctan




N2 − n2

s

n2
f − n2

s

n2
f − n2

s − (N2 − n2
s)

n2
f − n2

s


1/2


= − arctan




(
N2 − n2

s

n2
f − n2

s

)

1−

(
N2 − n2

s

n2
f − n2

s

)


1/2


= − arctan

[(
b

1− b

)1/2
]

(2.67b)

The third term in the eigenvalue equation (2.64) is transformed to

− arctan

(N2 − n2
c

n2
f −N2

)1/2
 = − arctan




N2 − n2

s + (n2
s − n2

c)

n2
f − n2

s

n2
f − n2

s − (N2 − n2
s)

n2
f − n2

s


1/2


= − arctan




(
N2 − n2

s

n2
f − n2

s

)
+

(
n2
s − n2

c

n2
f − n2

s

)
(
n2
f − n2

s

n2
f − n2

s

)
−

(
N2 − n2

s

n2
f − n2

s

)


1/2


= − arctan

[(
b+ a

1− b

)1/2
]

(2.67c)

After the substitutions according to Eqs. (2.67), Eq. (2.64) can be transformed into the

normalized form

V (1− b)1/2 = νπ + arctan

[(
b

1− b

)1/2
]

+ arctan

[(
b+ a

1− b

)1/2
]

(2.68)

The cut-off frequency or thickness follows from b→ 0 (N → ns). According to Eq. (2.68),

the cut-off frequecy/thickness of the fundamental mode, ν = 0 , becomes

V0 = arctan (a)1/2 ≤ π

2
≈ 1, 5708 (2.69)

With the help of Eq. (2.66a) we get

V0 =
[ωh]0
c

(
n2
f − n2

s

)1/2
= 2π

[
h

λvac

]
0

(
n2
f − n2

s

)1/2
= arctan (a)1/2 (2.70)
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where V0 , resp. [ωh]0 , and

[
h

λvac

]
0

are the cut-off values of the parameters for the

fundamental mode, ν = 0 , i.e., the cut-off values of the V -number, cut-off (i.e., the

lowest) value of the thickness, h , the cut-off (i.e., the lowest) value of frequency, ω , or

the cut-off (i.e., the highest) value of the vacuum wavelength, λvac . It follows

2π

[
h

λvac

]
0

(
n2
f − n2

s

)1/2
= arctan

(
n2
s − n2

c

n2
f − n2

s

)1/2

(2.71)

The cut-off frequency and thickness correspond to b = 0 (N → ns) . For higher mode

orders, ν > 0 , we get according to Eq. (2.68),

Vν = νπ + arctan (a)1/2 = νπ + V0 ≤ νπ +
π

2
. (2.72)

At high orders, ν � 1 , V0 becomes negligible,

Vν ≈ νπ (2.73)

The number of allowed waveguide modes increases with the mode frequency and with the

film thickness. Consequently, the number of allowed waveguide modes increases with V ,

according to Eq. (2.66a), at a fixed
(
n2
f − n2

s

)
,

ν ≈ Vν
π

=

(
2h

λvac

)
ν

(
n2
f − n2

s

)1/2
(2.74)

Note that V number given by Eq. (2.66a) can be expressed in terms of the ratio of the

thickness, h , to the minimum penetration depth at the film - substrate interface, δ
(fs)
min .

The penetration depth is given by Eq. (2.24). Its minimum occurs at θf → π/2),

δ
(fs)
min = lim

θf→π/2
δ(fs) = lim

θf→π/2

λvac

2π
(
n2
f sin2 θf − n2

s

)1/2

=
λvac

2π
(
n2
f − n2

s

)1/2
(2.75)

Equation (2.75) provides for V number

V =
2πh

λvac

(
n2
f − n2

s

)1/2
=

h

δ
(fs)
min

(2.76)

2.5 Goos – Hänchen shift

So far, we have considered the waveguiding in terms of plane waves characterized by their

propagation vector and their phase. We now include the analysis of energy flow using



34 CHAPTER 2. PRINCIPLE OF DIELECTRIC WAVEGUIDES

the notion of ray.7 The orientation of a ray coincides with that of a Poynting vector,

S , associated with a wave bundle. A ray orientation can be understood as an axis of

the corresponding wave bundle. The propagation vector is characterized by the wave

phase velocity while the Pointing vector, S , is related to the group velocity. For a plane

wave in unbound isotropic medium, k and S are parallel with the same orientation. In

general, this is not true in anisotropic media and, in certain cases at the interfaces of

isotropic media. At total internal reflection at the interface of two dielectrics, k and the

mean value of 〈S〉 are perpendicular to each other and the reflected ray is shifted with

respect to the incident ray. The phenomenon is called the Goose – Hänchen shift. Here

we consider the Goose – Hänchen shift suffered by waveguide modes at the waveguide

interfaces characterized by a guide index N . Here N represent the solution either to the

eigenvalue equation (2.44a) for TE modes or that to the eigenvalue equation (2.44b) for

TM modes.

2.5.1 Nonmagnetic media

We consider incidence of a ray on the interface of dielectrics characterized by different

electric permittivities (εf 6= εs ) while their magnetic permeabilities are equal (µf =

µs = µ ) at the angles of incidence θf exceeding the critical angle θf > θ
(crit)
f where

θ
(crit)
f = arcsin (ns/nf ) . Then

εfµ

εvacµvac

= n2
f and

εsµ

εvacµvac

= n2
s . For the sake of simplicity,

we replace a Gaussian wave bundle by a sum of two plane waves. The orientation of their

propagation vectors differs by a small angle (Figure 2.16). The angular difference affects

the longitudinal propagation constant β = (ω/c)N and can be expressed as,

∆β =
ω

c
nf ∆ (sin θf ) =

ω

c
∆N (2.77)

The interface is set to the plane x = 0 . The electric field of the incident ray, Ei , in the

plane x = 0 is given by a sum of electric wave fields of unit amplitudes with slightly

different propagation vectors with β + ∆β and β −∆β

Ei = exp [−j (β + ∆β) z] + exp [−j (β −∆β) z]

= 2 cos (∆β z) exp (−jβz) (2.78)

The maximum of Ei is situated at z = 0 . The difference in angles of incidence will result

in different phase shifts at total internal reflection. For TE waves, we have, according to

Eq. (2.32a), pertinent to the interface between a film, f , and a substrate, s , a phase half

shift

φ
(TE)
fs = arctan

(
n2
f sin2 θf − n2

s

)1/2

nf cos θf
(2.79)

7Herwig Kogelnik, Theory of Dielectric Waveguides in Integrated Optics, Editor: Theodor Tamir,

Topics in Applied Physics, Vol. 7, Springer Verlag, Berlin, Heidelberg, New York, 1975, p.25.



2.5. GOOS – HÄNCHEN SHIFT 35

Equation (2.65) for φ
(TE)
fs can be expressed either in terms of β or N

φ
(TE)
fs = arctan

[
(N2 − n2

s)
1/2(

n2
f −N2

)1/2

]
= arctan


(ω
c

)
(N2 − n2

s)
1/2(ω

c

) (
n2
f −N2

)1/2



= arctan


β2 −

(ω
c

)2

n2
s(ω

c

)2

n2
f − β2


1/2


(2.80)

A development of φ
(TE)
fs into a Taylor series up to the linear term gives

φ
(TE)
fs (β ±∆β) = φ

(TE)
fs (β)±

[
d

dβ
φ

(TE)
fs (β)

]
β

∆β

= φ
(TE)
fs (β)±∆

[
φ

(TE)
fs (β)

]
(2.81)

The electric field of the totally reflected ray in the interface plane x = 0 , includes the

phase shift 2φ
(TE)
fs (β ±∆β) of the sum of two plane waves

Er = exp
[
−j (β + ∆β) z + j2

(
φ

(TE)
fs + ∆φ

(TE)
fs

)]
+ exp

[
−j (β −∆β) z + j2

(
φ

(TE)
fs −∆φ

(TE)
fs

)]
= exp

[
−j
(
βz − 2φ

(TE)
fs

)]
×
{

exp
[
−j
(

∆βz − 2∆φ
(TE)
fs

)]
+ exp

[
j
(

∆βz − 2∆φ
(TE)
fs

)]}
= 2 exp

[
−j
(
βz − 2φ

(TE)
fs

)]
cos
(

∆βz − 2∆φ
(TE)
fs

)
(2.82)

The maximum of Er is situated at a distance z
(TE)
max from the origin on the z axis and

remains in the plane x = 0 ,

∆β z(TE)
max − 2 ∆φ

(TE)
fs = 0 (2.83)

We define the distance z
(TE)
max = 2z

(TE)
s . From Eq. (2.83) it follows

z(TE)
max = 2z(TE)

s =
2∆φ

(TE)
fs

∆β
≈ 2

d

dβ
φ

(TE)
fs = 2

c

ω

d

dN
φ

(TE)
fs (2.84)
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After som algebra

d

dN
φ

(TE)
fs =

d

dN
arctan

(N2 − n2
s

n2
f −N2

)1/2


=
1

1 +
(N2 − n2

s)(
n2
f −N2

)
1

2

(
n2
f −N2

N2 − n2
s

)1/2
2N
(
n2
f −N2

)
+ 2N (N2 − n2

s)(
n2
f −N2

)2

=
n2
f −N2(
n2
f − n2

s

) (n2
f −N2

N2 − n2
s

)1/2
N
(
n2
f − n2

s

)(
n2
f −N2

)2 =

(
n2
f −N2

N2 − n2
s

)1/2
N(

n2
f −N2

)
=

N[
(N2 − n2

s)
(
n2
f −N2

)]1/2
=

nf sin θf

(N2 − n2
s)

1/2 nf cos θf

=
tan θf

(N2 − n2
s)

1/2
, (2.85)

where,

tan θf =
N(

n2
f −N2

)1/2
(2.86)

The half distance between the incident and reflected rays, z
(TE)
s in Eq. (2.84) becomes,

with the help of Eq. (2.85),

z(TE)
s =

c

ω

dφ
(TE)
fs

dN

=
tan θf

ω

c

(
N2 − n2

s

)1/2
(2.87)

An intersection of the axes of incident and reflected rays is found in the depth x
(TE)
s . For

tan θf we further have,

tan θf =
z

(TE)
s

x
(TE)
s

, (2.88)

i.e.,

z(TE)
s = x(TE)

s tan θf (2.89)

The distance, 2z
(TE)
s between the intersection of the axis of incident ray with the z axis

and the intersection of the axis of reflected ray with the z axis is called Goose – Hänchen

for TE polarization.
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We get, after the elimination of z
(TE)
s and tan θf using Eqs. (2.87) and (2.88),

x(TE)
s =

1
ω

c

(
N2 − n2

s

)1/2
=

1
ω

c

(
n2
f sin2 θf − n2

s

)1/2

=
λvac

2π
(
n2
f sin2 θf − n2

s

)1/2
(2.90)

which represents the penetration depth into the substrate for TE waves (at the same

magnetic permeabilities in the film and in the substrate, µf = µs), according to Eq. (2.24).

The Goose – Hänchen shift at the interface between the film and the surrounding

(substrate) dielectrics of a lower index of refraction, evaluated as 2zs , and the wave

penetration into the surrounding dielectrics, xs , increase with a decreasing difference in

indices of refraction, nf − ns , as demonstrated in Figures 2.16 and 2.17.

2.5.2 Magnetic media

We consider incidence of a ray on the interface of dielectrics characterized by different elec-

tric permittivities (εf 6= εs ) once more, now in a more general case where their magnetic

permeabilities are different (µf 6= µs ) at the angles of incidence θf exceeding the criti-

cal angle θf > θ
(crit)
f where θ

(crit)
f = arcsin (ns/nf ) for

εfµf
εvacµvac

= n2
f and

εsµs
εvacµvac

= n2
s .

For the sake of simplicity, we replace a Gaussian wave bundle by a sum of two plane

waves. The orientation of their propagation vectors differs by a small angle (Figure 2.16).

As in Eq. (2.77), the angular difference will affect the longitudinal propagation constant

β = (ω/c)N and will be expressed as,

∆β =
ω

c
nf ∆ (sin θf ) =

ω

c
∆N (2.91)

The interface is set to the plane x = 0 . The electric field of the incident ray, Ei , in the

plane x = 0 is given by a sum of electric wave fields of unit amplitudes with slightly

different propagation vectors with β + ∆β and β −∆β

Ei = exp [−j (β + ∆β) z] + exp [−j (β −∆β) z]

= 2 cos (∆βz) exp (−jβz) (2.92)

The maximum of Ei is situated at z = 0 . The difference in angles of incidence will result

in different phase shifts at total internal reflection. For TE waves, we have, according to

Eq. (2.32a), pertinent to the interface between a film, f , and a substrate, s , a half phase

shift

φ
(TE)
fs = arctan

[
µf
µs

(
n2
f sin2 θf − n2

s

)1/2

nf cos θf

]
(2.93)



38 CHAPTER 2. PRINCIPLE OF DIELECTRIC WAVEGUIDES

Equation (2.65) for φ
(TE)
fs can be expressed either in terms of β or N ,

φ
(TE)
fs = arctan

[
µf
µs

(N2 − n2
s)

1/2(
n2
f −N2

)1/2

]
= arctan

µf
µs

(ω
c

)
(N2 − n2

s)
1/2(ω

c

) (
n2
f −N2

)1/2



= arctan


µf
µs

β2 −
(ω
c

)2

n2
s(ω

c

)2

n2
f − β2


1/2


(2.94)

A development of φ
(TE)
fs into a Taylor series up to the linear term gives

φ
(TE)
fs (β ±∆β) = φ

(TE)
fs (β)±

[
d

dβ
φ

(TE)
fs (β)

]
β

∆β

= φ
(TE)
fs (β)±∆

[
φ

(TE)
fs (β)

]
(2.95)

The electric field of the totally reflected ray in the interface plane x = 0 , includes the

phase shift 2φ
(TE)
fs (β ±∆β) of the sum of two plane waves. It is of the same form as in

Eq. (2.82),

Er = exp
[
−j (β + ∆β) z + j2

(
φ

(TE)
fs + ∆φ

(TE)
fs

)]
+ exp

[
−j (β −∆β) z + j2

(
φ

(TE)
fs −∆φ

(TE)
fs

)]
= exp

[
−j
(
βz − 2φ

(TE)
fs

)]
×
{

exp
[
−j
(

∆βz − 2∆φ
(TE)
fs

)]
+ exp

[
j
(

∆βz − 2∆φ
(TE)
fs

)]}
= 2 exp

[
−j
(
βz − 2φ

(TE)
fs

)]
cos
(

∆βz − 2∆φ
(TE)
fs

)
. (2.96)

The maximum of Er is situated at a distance z
(TE)
max from the origin on the z axis and

remains in the plane x = 0 ,

∆βz − 2∆φ
(TE)
fs = 0 (2.97)

We again define the distance z
(TE)
max = 2z

(TE)
s . From Eq. (2.97) it follows

z(TE)
max = 2z(TE)

s =
2∆φ

(TE)
fs

∆β
≈ 2

d

dβ
φ

(TE)
fs = 2

c

ω

d

dN
φ

(TE)
fs (2.98)
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We employ β = N (ω/c) and compute

d

dN
φ

(TE)
fs =

d

dN
arctan

µf
µs

(
N2 − n2

s

n2
f −N2

)1/2


=
1

1 +
µ2
f

µ2
s

(N2 − n2
s)(

n2
f −N2

)
1

2

µf
µs

(
n2
f −N2

N2 − n2
s

)1/2
2N
(
n2
f −N2

)
+ 2N (N2 − n2

s)(
n2
f −N2

)2

=
1

n2
f −N2

µ2
f

+
N2 − n2

s

µ2
s

N

µfµs

n2
f − n2

s(
n2
f −N2

)1/2
(N2 − n2

s)
1/2

=
µfµs

(
n2
f − n2

s

)
µ2
s

(
n2
f −N2

)
+ µ2

f (N2 − n2
s)

N[
(N2 − n2

s)
(
n2
f −N2

)]1/2
=

µfµs
(
n2
f − n2

s

)
µ2
s

(
n2
f −N2

)
+ µ2

f (N2 − n2
s)

nf sin θf

(N2 − n2
s)

1/2 nf cos θf

=
µfµs

(
n2
f − n2

s

)
µ2
s

(
n2
f −N2

)
+ µ2

f (N2 − n2
s)

tan θf

(N2 − n2
s)

1/2
(2.99)

The half distance between the incident and reflected rays, z
(TE)
s in Eq. (2.98) becomes,

with the help of Eq. (2.99),

z(TE)
s =

µfµs
(
n2
f − n2

s

)
µ2
s

(
n2
f −N2

)
+ µ2

f (N2 − n2
s)

tan θf
ω

c

(
N2 − n2

s

)1/2

=
λvac

2π

1

µfµs

(
n2
f −N2

)
+ (N2 − n2

s)

n2
f −N2

µ2
f

+
N2 − n2

s

µ2
s

tan θf

(N2 − n2
s)

1/2

=
λvac

2π

1

µfµs

(
n2
f −N2

)
+ (N2 − n2

s)

n2
f −N2

µ2
f

+
N2 − n2

s

µ2
s

N

(N2 − n2
s)

1/2 (n2
f −N2

)1/2

=
λvac

2π

(
n2
f −N2

)
+ (N2 − n2

s)
µs
µf

(
n2
f −N2

)
+
µf
µs

(
N2 − n2

s

) N

(N2 − n2
s)

1/2 (n2
f −N2

)1/2

(2.100a)
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The duality transforms z
(TE)
s to z

(TM)
s ,

z(TM)
s =

εfεs
(
n2
f − n2

s

)
ε2
s

(
n2
f −N2

)
+ ε2

f (N2 − n2
s)

tan θf
ω

c

(
N2 − n2

s

)1/2

=
λvac

2π

1

εfεs

(
n2
f −N2

)
+ (N2 − n2

s)

n2
f −N2

ε2
f

+
N2 − n2

s

ε2
s

tan θf

(N2 − n2
s)

1/2

=
λvac

2π

1

εfεs

(
n2
f −N2

)
+ (N2 − n2

s)

n2
f −N2

ε2
f

+
N2 − n2

s

ε2
s

N

(N2 − n2
s)

1/2 (n2
f −N2

)1/2

=
λvac

2π

(
n2
f −N2

)
+ (N2 − n2

s)
εs
εf

(
n2
f −N2

)
+
εf
εs

(
N2 − n2

s

) N

(N2 − n2
s)

1/2 (n2
f −N2

)1/2

(2.100b)

In the special case where the magnetic permeability in the film is the same as in the

substrate,8 i.e., where µf = µs , we can take εf = n2
fεvac and εs = n2

sεvac to arrive at,

z(TM)
s =

n2
fn

2
s

(
n2
f − n2

s

)
n4
s

(
n2
f −N2

)
+ n4

f (N2 − n2
s)

tan θf
ω

c

(
N2 − n2

s

)1/2

=
λvac

2π

1

n2
s

− 1

n2
f

1

n2
f

− 1

n2
s

−N2

(
1

n4
f

− 1

n4
s

) tan θf

(N2 − n2
s)

1/2

=
λvac

2π

(
1

n2
s

− 1

n2
f

)

N2

(
1

n2
s

− 1

n2
f

)(
1

n2
s

+
1

n2
f

)
+

(
1

n2
f

− 1

n2
s

) tan θf

(N2 − n2
s)

1/2

=
λvac

2π

1

N2

(
1

n2
s

+
1

n2
f

)
− 1

tan θf

(N2 − n2
s)

1/2

(2.101)

The axes of the incident and reflected beams intersect in the substrate at the depth, x
(TE)
s .

Alternatively, tan θf can also be expressed as

tan θf =
z

(TE)
s

x
(TE)
s

, (2.102)

8Herwig Kogelnik, Theory of Dielectric Waveguides in Integrated Optics, Editor: Theodor Tamir,

Topics in Applied Physics, Vol. 7, Springer Verlag, Berlin, Heidelberg, New York, 1975, p. 27.



2.6. EFFECTIVE GUIDE THICKNESS 41

i.e.,

z(TE)
s = x(TE)

s tan θf (2.103)

As before, the distance, 2z
(TE)
s , spanned by the point of intersection between the incident

ray axis and the z axis and the point of intersection between the reflected ray axis and

the z axis represents the Goose – Hänchen shift for TE waves. Note that the z axis is

restricted to the interface plane between the film and the substrate. The configuration is

shown in Figure 2.16. The elimination of z
(TE)
s and tan θf using Eqs. (2.100) and (2.102)

provides a more general expression for x
(TE)
s ,

x(TE)
s =

λvac

2π

1

µfµs

(
n2
f −N2

)
+ (N2 − n2

s)

n2
f −N2

µ2
f

+
N2 − n2

s

µ2
s

1

(N2 − n2
s)

1/2

(2.104a)

The expression for the penetration depth, x
(TM)
s , for TM waves follows from the duality

transformation,

x(TM)
s =

λvac

2π

1

εfεs

(
n2
f −N2

)
+ (N2 − n2

s)

n2
f −N2

ε2
f

+
N2 − n2

s

ε2
s

1

(N2 − n2
s)

1/2

(2.104b)

2.6 Effective guide thickness

2.6.1 TE polarization

The modification of Eqs. (2.90) or (2.104a) to the case of the film – cover interface

provides,

x(TE)
c =

1
ω

c

(
n2
f sin2 θf − n2

c

)1/2
=

1
ω

c

(
N2 − n2

c

)1/2
(2.105)

We define effective guide thickness for TE waves, shown in Figures 2.18 and 2.19, as

the sum of the physical film thickness, h , and both the penetration depths (restricted to

TE waves in waveguides with µf = µs = µc ) given in Eqs. (2.104a) and (2.105),

h
(TE)
eff = h+ x(TE)

s + x(TE)
c (2.106)

The Goos–Hänchen shifts on the upper and lower interface between the film and the sur-

rounding media of lower indices of refraction, zc and zs , and the penetration depths
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into the upper (cover) and lower (substrate) media, xc and xs increase with decreasing

the difference between the index of refraction and that in the upper or lower medium. For

TE waveguide modes, the effective guide index, N = nf sin θf given Eq. (2.42) and em-

ployed in the expressions for z
(TE)
s and x

(TE)
s (z

(TE)
c and x

(TE)
c ) follows from the solution

to Eq. (2.44a).9 We have

tan θf =
z

(TE)
s

x
(TE)
s

=
z

(TE)
c

x
(TE)
c

(2.107)

Normalized effective guide thickness for TE waves is defined as

H(TE) =
ω

c
h

(TE)
eff

(
n2
f − n2

s

)1/2
(2.108)

which should be compared with the definition of the V number in Eq. (2.66a)

V =
ω

c
h
(
n2
f − n2

s

)1/2
(2.109)

Then

H(TE)

V
=

h
(TE)
eff

h
(2.110)

The substitution into Eq. (2.106) with the help of Eqs. (2.90) and (2.105) and with the

account of Eq. (2.108) provides

h
(TE)
eff =

H(TE)

ω

c

(
n2
f − n2

s

)1/2

= h+
1

ω

c

(
N2 − n2

s

)1/2
+

1
ω

c

(
N2 − n2

c

)1/2
(2.111)

and for H(TE) we get,

H(TE) =
ω

c
h
(
n2
f − n2

s

)1/2
+

(
n2
f − n2

s

)1/2

(N2 − n2
s)

1/2
+

(
n2
f − n2

s

)1/2

(N2 − n2
c)

1/2
(2.112)

With help of Eqs. (2.66), it follows,

H(TE) = V + b−1/2 + (b+ a)−1/2 (2.113)

where b represents the solution to Eq. (2.68).

9For TM waveguide modes, the effective guide index, N = nf sin θf given Eq. (2.42) follow from the

solution to Eq. (2.44b).
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2.6.2 TM polarization

The modification of Eq. (2.104b) to the case of the film – cover interface provides

x(TM)
c =

λvac

2π

1

εfεc

(
n2
f −N2

)
+ (N2 − n2

c)

n2
f −N2

ε2
f

+
N2 − n2

c

ε2
c

1

(N2 − n2
c)

1/2

(2.114)

The effective guide thickness is given by the sum of the physical film thickness, h , and

the both penetration depths given by Eqs. (2.104b) and (2.114)

h
(TM)
eff = h+ x(TM)

s + x(TM)
c (2.115)

The normalized effective guide thickness for TM waves deduced in a similar way as in

Eq. (2.108) is given by the expression,

H(TM) =
ω

c
h

(TM)
eff

(
n2
f − n2

s

)1/2
(2.116)
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Figure 2.9: Graphical solution to the eigenvalue equation in a symmetric waveguide for mode

orders ν ≥ 0 at the wavelength λvac = 1.55µm . The planar film characterized by the thickness,

h1 , and the index of refraction, n1 = 2.0 , is sandwiched between the same media characterized

by the index of refraction, n2 = 1.5 . For the thickness range h1 ≤ 0.587µm , the waveguide is

monomode, it carries the fundamental mode ν = 0 , only. An extension of the thickness range

to h1 ≤ 1.168µm , enables propagation of both the fundamental mode, ν = 0 and the mode of

the order ν = 1 . A further extension to h1 ≤ 1.76µm , allows the propagation of modes of the

order ν = 0 , ν = 1 , and ν = 2 . The modes of the order ν > 2 are forbidden.
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Figure 2.10: Graphical solution to the eigenvalue equation, 2πhnf cos θf/λvac = φfc + φfs ,

for the fundamental (ν = 0) TE and TM modes in an asymmetric waveguide at the vacuum

wavelength λvac = 1 060 nm . The waveguide consists of a planar layer (ZnS) of the index of

refraction nf = 2.2899 and of the thickness, h , sandwiched between the cover (air) of the

index of refraction, nc = 1.0 , and a substrate (glass) of the index of refraction ns = 1.5040 .

The waveguide allows the propagation of the guided TE and TM modes above the cut-off

thickness, h = 56 nm and h = 126 nm , respectively. After P. K. Tien, Integrated optics and new

wave phenomena in optical waveguides, Review of Modern Physics, vol. 49, pp. 361-420, April

1977.
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Figure 2.11: Graphical solution to the eigenvalue equation for the TE and TM modes,

ν = 0, 1, 2, 3 , in an asymmetric waveguide at the vacuum wavelength λvac = 1 060 nm .

The waveguide consists of a planar layer (ZnS) of the index of refraction nf = 2.2899 and

of the thickness, h , sandwiched between the cover (air) of the index of refraction, nc = 1.0 ,

and a substrate (glass) of the index of refraction ns = 1.5040 for several film thicknesses, h .

The vertical line indicates the TE solution for ν = 1 at θf = 65◦ . See Tables 2.1 and 2.2.
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Figure 2.12: Graphical solution to the eigenvalue equation for the TE and TM modes,

ν = 1, 2, 3, 4 , in an asymmetric waveguide at the vacuum wavelength λvac = 1 060 nm .

The waveguide consists of a planar layer (ZnS) of the index of refraction nf = 2.2899 and

of the thickness, h , sandwiched between the cover (air) of the index of refraction, nc = 1.0 , and

a substrate (glass) of the index of refraction ns = 1.5040 . See Tables 2.1 and 2.2.
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Figure 2.13: Graphical solution to the eigenvalue equation, for the TE and TM modes, ν =

0, 1, 2, 3 , in an asymmetric waveguide at λvac = 1 060 nm . The waveguide consists of a film

of the index of refraction nf = 2.2899 and of the thickness, h = 1 500 nm , sandwiched between

a cover (nc = 1.0), and a substrate (ns = 1.5040 ). The guided TE and TM modes of the

order ν = 0 propagate with θ
(TE)
f = 82.1◦ and θ

(TM)
f = 81.4◦ , those of the order ν = 1 with

θ
(TE)
f = 74.1◦ and θ

(TM)
f = 72.8◦ , those of the order ν = 2 with θ

(TE)
f = 65.7◦ and θ

(TM)
f = 63.7◦

and those of the order ν = 3 with θ
(TE)
f = 56.9◦ and θ

(TM)
f = 54, 2◦ , respectively.
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Figure 2.14: Graphical solution to the eigenvalue equation in an asymmetric waveguide at

λvac = 1060 nm . The waveguide consists of a film (nf = 2.2899) of the thickness, h = 1 500 nm ,

sandwiched between a cover (nc = 1.0), and a substrate (ns = 1.5040 ). The guided TE and TM

modes of the order ν = 1 propagate with θ
(TE)
f = 74, 1◦ and θ

(TM)
f = 72, 8◦ , those of the order

ν = 2 with θ
(TE)
f = 65, 7◦ and θ

(TM)
f = 63, 7◦ , those of the order ν = 3 with θ

(TE)
f = 56, 9◦

and θ
(TM)
f = 54, 2◦ and those of the order ν = 4 with θ

(TE)
f = 47, 7◦ and θ

(TM)
f = 44, 3◦ ,

respectively. See Tables 2.1 and 2.2.
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Figure 2.15: Profile of index of refraction, n , in a waveguide with suppressed modal dispersion,

n =

{
n2
s + 2ns∆n

[
cosh

( x
2h

)]−2
}1/2

. Here ns = 1.5 and ∆n = 0.1 .
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zs zs
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Figure 2.16: Goose – Hänchen shift for TE waves at the film - substrate interface at the vacuum

wavelength 1 550 nm and at the angle of incidence, θf = 65◦ . After Herwig Kogelnik, Theory of

Dielectric Waveguides in Integrated Optics, Editor: Theodor Tamir, Topics in Applied Physics,

Vol. 7, Springer Verlag, Berlin, Heidelberg, New York, 1975, p. 26.
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Figure 2.17: Goose – Hänchen shift for TE waves at the interface between the film and the

cover (air) at the vacuum wavelength λvac = 1 550 nm and at an angle of incidence θf = 65◦ .

After Herwig Kogelnik, Theory of Dielectric Waveguides in Integrated Optics, Editor: Theodor

Tamir, Topics in Applied Physics, Vol. 7, Springer Verlag, Berlin, Heidelberg, New York, 1975,

p. 27.
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Figure 2.18: Effective guide thickness for the order ν = 1 at the vacuum wavelength λvac =

1 550 nm for TE waves at an internal angle of incidence, θf = 65◦ . The waveguide consists

of a planar film (BiYIG - bismuth substituted yttrium iron garnet) of the index of refraction,

nf = 2.2 and of the thickness h = 800 nm sandwiched between the cover (air) of the index

of refraction, nc = 1.0 and the substrate (GGG - gadolinium gallium garnet) of the index of

refraction ns = 1.9 . The penetration depths into the cover and into the substrate become

xc = 143 nm and xs = 408 nm , respectively.
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Figure 2.19: Effective guide thickness for the order ν = 1 at the vacuum wavelength λvac =

1 060 nm for TE waves at an internal angle of incidence, θf = 65◦ . The waveguide consists of

a planar film (ZnS) of the index of refraction, nf = 2.2899 and of the thickness h = 906 nm

sandwiched between the cover (air) of the index of refraction, nc = 1.0 and the substrate (glass)

of the index of refraction ns = 1.5040 . The penetration depths into the cover and into the

substrate become xc = 93 nm and xs = 118 nm , respectively. The graphical solution to the

eigenvalue equation in Figure 2.11 was employed. After Herwig Kogelnik, Theory of Dielectric

Waveguides in Integrated Optics, Editor: Theodor Tamir, Topics in Applied Physics, Vol. 7,

Springer Verlag, Berlin, Heidelberg, New York, 1975.



Chapter 3

Maxwell equations

In a vacuum with a zero charge density, ρ = 0 , and a zero current density, J = 0 , the

electric and magnetic flux density vectors, E and B , are related by Maxwell equations,1

∇×E +
∂B

∂t
= 0 , (3.1a)

∇×B − 1

c2

∂E

∂t
= 0 . (3.1b)

In a medium with a non zero charge density, ρ 6= 0 , and a non zero current density,

J 6= 0 , the Maxwell equations become

∇×E +
∂B

∂t
= 0 (3.2a)

∇×B − µvacεvac
∂E

∂t
= µvacJ (3.2b)

where the vacuum phase velocity is given by c = (µvacεvac)
−1/2 . The charge conservation

(continuity equation) requiring

∇ · J +
∂%

∂t
= 0 (3.3)

leads to the expressions for ∇ ·E and ∇ ·B . Consider the identities

∇ · (∇×E) ≡ 0

∇ · (∇×B) ≡ 0

Their use in Eqs. (3.2a) leads to

∇ · (∇×E) +
∂

∂t
(∇ ·B) = 0 (3.4)

1R. Wangsness, Electromagnetic Fields , 2nd Edition, John Wiley & Sons, 1986, Chapter 21.

54
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The time independent could not be generated in the infinite past. It is therefore reasonable

to assume

∇ ·B = 0 (3.5)

From the second Maxwell equation, Eq. (3.2b)

∇ · (∇×B)− µvacεvac
∂

∂t
(∇ ·E) = µvac (∇ · J) (3.6)

From this

∂

∂t

(
∇ ·E − %

εvac

)
= 0 (3.7)

The result is the scalar Maxwell equation representing the Coulomb law of electrostatics,

∇ ·E =
%

εvac

(3.8)

We decompose the total charge density, % , to a free charge density component, %f ,

and to a bound charge density component, %b = −∇ · P ,

% = %f + %b (3.9)

The total current density can be expressed as a multipole development. With the restric-

tion to first terms,

J = %f v +
∂P

∂t
+∇×M + . . . (3.10)

After the substitution into the Maxwell equation,

∇×B − 1

c2

∂E

∂t
= µvac%f v + µvac

∂P

∂t
+ µvac (∇×M) + . . . (3.11)

With the restriction to first few terms,

µ−1
vac [∇× (B − µvacM )] = %f v +

∂

∂t
(εvacE + P ) (3.12)

We define the magnetic field vector, H ,

H = µ−1
vac (B − µvacM) , (3.13)

the electric induction vector, D ,

D = εvacE + P (3.14)

and the free charge density vector, Jf ,

Jf = %f v (3.15)
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Consequently,

∇×H = Jf +
∂D

∂t

= %fv +
∂P

∂t
+ εvac

∂E

∂t

= Jf + J b + εvac
∂E

∂t

= J + εvac
∂E

∂t
(3.16)

where J b =
∂P

∂t
represents bound charge current density.

From the continuity equation, Eq. (3.3)

∇ · J +
∂%

∂t
= 0 (3.17)

∇ ·
(
%fv +

∂P

∂t

)
+
∂%f
∂t

+
∂%b
∂t

= 0 (3.18)

∇ ·
(
%fv +

∂P

∂t

)
+ εvac

∂

∂t
(∇ ·E) = 0 (3.19)

∇ · (%fv) +
∂

∂t
[∇ · (εvacE + P )] = 0 (3.20)

(3.21)

where %b denotes the bound charge density. We assume that free charges are conserved

and bound charges are conserved independent of each other, i.e.,

∇ · Jf +
∂%f
∂t

= 0 (3.22)

∇ · J b +
∂%b
∂t

= 0 (3.23)

The substitution into Eq. (3.17) according to ∇ · Jf = ∇ · (%fv) = −∂%f
∂t

provides,

∂

∂t
[∇ · (εvacE + P )] =

∂%f
∂t

(3.24)

From this it follows,

∇ ·D = %f (3.25)

The use of the charge conservation law, Eq. (3.3) in the Maxwell equations, Eqs. (3.2) in

the media characterized by the volume density of free charges, %f (r) , the volume density
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of free charge currents, Jf (r) and by the volume densities of electric and magnetic

dipoles, P (r) , and M (r) , respectively, results in the Maxwell equations,

∇×E = −∂B
∂t

(3.26a)

∇×H = Jf +
∂D

∂t
(3.26b)

∇ ·D = %f (3.26c)

∇ ·B = 0 (3.26d)

For our purpose, it will be sufficient to characterize the presence of material medium by

distributions of electric and magnetic dipoles, P (r, t) and M (r, t) , respectively. With-

out the restriction generality, we can assume harmonic time, t , dependence of the fields

characterized by the angular frequency, ω . A more complicated time dependence can

always be characterized as a Fourier sum of monochromatic components. By conven-

tion, the harmonic time dependence will be from now characterized by a complex factor,

exp(jωt) . Maxwell equations, Eqs. (3.26) can be transformed into the following form

∇×E(ω) = −jωB(ω) (3.27a)

∇×H(ω) = Jf (ω) + jωD(ω) (3.27b)

∇ ·D(ω) = %f (ω) (3.27c)

∇ ·B(ω) = 0 (3.27d)

where the medium linearity is included in the material equations,

D(ω) = ε(ω)E(ω) , B(ω) = µ(ω)H(ω) , Jf (ω) = σ(ω)E(ω)

(3.28)

Here ε(ω) = εvacκe(ω) denotes the medium electric permittivity (κe(ω) denotes the rela-

tive electric permittivity), µ(ω) = µvacκm(ω) denotes the medium magnetic permeability

(κm(ω) denotes the relative magnetic permeability) and σ(ω) denotes the medium free

charge conductivity. Our focus is on linear isotropic in general non homogeneous media

where ε(r , ω) , µ(r , ω) and σ(r , ω) are scalar functions of the position r at the fre-

quency, ω .

In the following, we shall restrict ourselves to electrically neutral non conducting

media, %f = 0 and σ = 0 . The Maxwell equations simplify to

∇×E = −jωµH (3.29a)

∇×H = jωεE (3.29b)

∇ · (εE) = 0 (3.29c)

∇ · (µH) = 0 (3.29d)



58 CHAPTER 3. MAXWELL EQUATIONS

The last two equations, Eqs. (3.29c) and (3.29d) are the consequence of the first two

equations, Eqs. (3.29a) and (3.29b). It is sufficient to take the divergence of Eqs. (3.29a)

and (3.29b) and employ the identities, ∇ · (∇×E) ≡ 0 and ∇ · (∇×H) ≡ 0 . The

time derivatives of the field divergences of D and B permanently vanish provided the

divergence vanish, i.e. ∇ ·D = 0 and ∇ ·B = 0 .

The symmetry of the Maxwell equations, Eqs. (3.29), enable the construction of new

solutions thanks to the duality principle. The duality transformation leaves the Maxwell

equations, Eqs. (3.29), invariant. It is expressed by the relations,

E → ±H , (3.30a)

H → ∓E , (3.30b)

ε → µ , (3.30c)

µ → ε . (3.30d)

3.1 Boundary conditions

Maxwell equations do not provide unique solution of the electromagnetic field. From

an infinite number of their solutions, we must select those which are consistent with

the boundary conditions pertinent to a problem in question. In nonuniform structures

without surfaces of discontinuity, the only boundary condition usually requires finite fields

and their vanishing in infinitely remote regions. The fields vanishing in the infinity includes

the case of guided modes. The fields of guided modes are localized mostly in optical

structures. In near adjacent regions, the fields are manifested themselves as evanescent

waves. No energy is lost by radiation.

We now focus on the boundary conditions at surfaces of the discontinuity in electro-

magnetic material parameters, ε and µ . The problem geometry is shown in Figure 3.1.

1 2

ε1 , µ1

ε2 , µ2

surface of discontinuity

ε, µ

�
Figure 3.1: An abrupt change in ε and µ along the normal to the interface plane between

media 1 and 2.
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The time dependent fields, E and B , are interdependent as opposite to the time inde-

pendent fields where E and B are mutually independent. We start from the Maxwell

equation in integral form,2 ∮
C

E · ds = −jω

∫
S

µH · da (3.31a)

∮
C

H · ds = jω

∫
S

εE · da (3.31b)

Here C represents a closed curve bounding a two-sided surface S . A vector of an oriented

elementary displacement along C is denote as ds . As expected, both the vector integral

Maxwell equations are mutually related by the duality transformation. It is therefore

sufficient to consider one of them.

Let us consider a small region at the interface stretched into both media. The elemen-

tary interface surface can be taken as planar specified by a unit normal, n̂ , conventionally

oriented from the medium characterized by ε1 and µ1 to the medium characterized by ε2

and µ2 as in Figure 3.2.

2

1

n̂

h�
Figure 3.2: The interface unit normal at a surface of discontinuity is oriented from the medium

1 into the medium 2. A transition layer of the thickness h is stretched into both media.

In the elementary interface region, both the media can be taken as homogeneous ones.

We draw a rectangular loop bounding the elementary interface region.

Its longer opposite sides of the length, ∆s , parallel to the interface plane, are situated

either in the medium 1 or in the medium 2. The shorter sides of the length, h , traverse

the interface plane. The loop is situated in a plane perpendicular to the interface plane

and specified by a unit normal, n̂′ . Consequently, n̂′ is parallel to the interface plane.

The orientation of n̂′ defines the circulation sense of ds around C . The orientation of

integration path on the longer rectangle side in the medium 2 is given by a unit vector,

t̂2 = t̂ and the orientation of integration path on the longer rectangle side in the medium

2R. Wangsness, Electromagnetic Fields , 2nd Edition, John Wiley & Sons, 1986, Chapter 9.
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1 is given by a unit vector, t̂1 = −t̂ , consistent with the orientation of n̂′ . The geometry

is explained in Figure 3.3.

�12 n̂′

t̂1

t̂2

∆s
n̂

t̂
h

C

Figure 3.3: The interface unit vector normal, n̂ , the tangent unit vectors, t̂ = t̂2 = −t̂1 , and

the unit vector normal, n̂′ = n̂ × t̂ , to the integration loop, C , employed in the derivation of

the boundary conditions for tangent components of E or H .

From Eq. (3.31b) we get∮
C

H · ds = H2 · t2 ∆s+ H1 · t1 ∆s+W

= H2 · t∆s−H1 · t∆s+W

jω

∫
S

εE · da = jωh∆s εE

The field and its time derivative are everywhere finite. Consequently, in the limit h→ 0 ,

the surface integral on the right hand side of Eq. (3.31b) vanishes. The contribution, W ,

of the shorter rectangle sides to the integral around C , proportional to h , is zero. Then,

H2 · t2 ∆s+ H1 · t1 ∆s = 0

(H2 −H1) · t = 0

From this, we get for the field components tangent to the interface,

H2t = H1t (3.32a)

The use of the duality provides,

E2t = E1t (3.32b)

shown above, Eqs. (3.29c) and (3.29d) follow from Eqs. (3.29b) and (3.29a) and for the

time varying fields need not be considered.
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3.2 Wave equations in nonuniform media

The wave localization requires structures with non homogeneous electromagnetic material

parameters µ and ε. The parameters, µ and ε, may vary either continuously or abruptly,

e.g., at interfaces between homogeneous media. We will investigate wave equation in

linear, isotropic, non homogeneous media, where magnetic permeability, µ = µ (r) , and

electric permittivity, ε = ε (r) are functions of the position vector, r . We are interested

in solutions harmonic in time expressed in the phasor (complex vector) representation

accounted for by the factor exp (jωt) . We shall start from the Maxwell equations in

Eqs. (3.29). We apply the curl operation to Eq. (3.29a) divided by µ (r) and multiply

Eq. (3.29b) by jω ,

∇×
[
µ−1 (∇×E)

]
= −jω (∇×H) (3.33a)

jω (∇×H) = −εω2E (3.33b)

We eliminate jω (∇×H) and multiply by µ to arrive at the wave equation for E ,

µ∇×
[
µ−1 (∇×E)

]
= µεω2E . (3.34a)

The duality provides the corresponding wave equation for pro H ,

ε∇×
[
ε−1 (∇×H)

]
= µεω2H (3.34b)

We employ the identity,

µ∇×
[
µ−1 (∇×E)

]
= µ∇

(
µ−1
)
× (∇×E) + [∇× (∇×E)]

= µ∇
(
µ−1
)
× (∇×E) +

[
∇ (∇ ·E)−

(
∇2E

)]
(3.35)

and transform the wave equation into the form

∇ (∇ ·E)−
(
∇2E

)
+ µ∇

(
µ−1
)
× (∇×E) = µεω2E (3.36)

Equation (3.27c) in the absence of free charges gives, ∇ · D = %f = 0 . However in

general, in non homogeneous electrically neutral media, the condition ∇ · E = 0 is not

valid. Indeed,

∇ ·D = ∇ · [ε (r)E] = [∇ε (r)] ·E + ε (r) (∇ ·E) = 0 (3.37)

We find that ∇ ·E 6= 0 , i.e.,

∇ ·E = −∇ε
ε
·E .
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The ratio can be expressed as
∇ε
ε

= ∇ (ln ε) ,

∇ ·E = − [∇ (ln ε)] ·E (3.38)

The expression, µ∇ (µ−1) , in Eq. (3.36) may be alternatively written as,

µ∇
(
µ−1
)

= −µ 1

µ2
∇µ = −∇µ

µ
= −∇ (lnµ) (3.39)

By making use of Eqs. (3.37) trough (3.39) and after substituting into Eq. (3.36) we

get the wave equation for E in the final form,

∇2E + µεω2E +∇ [(∇ ln ε) ·E] + (∇ lnµ)× (∇×E) = 0

(3.40a)

The duality expressed in Eq. (3.30), i.e., E →H , µ↔ ε applied to Eq. (3.40a) provides

the corresponding wave equation for H ,

∇2H + µεω2H +∇ [(∇ lnµ) ·H ] + (∇ ln ε)× (∇×H) = 0

(3.40b)

In homogeneous media, where µ and ε are independent of the position vector, r , with

∇µ = 0 and ∇ε = 0 , the wave equations, Eqs. (3.40) simplify to,

∇2E + µεω2E = 0 (3.41a)

∇2H + µεω2H = 0 (3.41b)

If only the condition ∇µ = 0 is met, e.g., in non homogeneous non magnetic media, the

situation is characterized by,

∇2E + µεω2E +∇ [(∇ ln ε) ·E] = 0 (3.42)

We next look for the circumstances where the term ∇ [(∇ ln ε) ·E] in Eq. (3.42) is

negligible with respect the dominating terms,3

∇ [(∇ ln ε) ·E] ≈ 0 . (3.43)

The term is identically zero in the special case where the wave polarization of electric

field, E , is perpendicular to the gradient of permittivity, ∇ε . In the limiting case of

homogeneous media, ∇ε = 0 and the wave equation reduces to Eq. (3.41a)

∇2E + µεω2E = 0 (3.44)

3D. Marcuse, Light Transmission Optics, Van Nostrand Reinhold Company, New York 1972.
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where the solution for plane time harmonic, i.e., monochromatic, waves assumes the form

E = E0 exp [j (ω t− k · r)] (3.45)

with the angular frequency, ω , and the propagation vector, k . In the medium character-

ized by ε and µ , it follows,

k2E − µ(ω)ε(ω)ω2E = 0 (3.46)

The propagation constant k = |k| can be expressed in terms of the vacuum wavelength,

λvac , using the relation c2µε = n2 ,

k2 = µεω2 =

(
n

2π

λvac

)2

(3.47)

The first two dominating terms in Eq. (3.42) are of the order |k2E| . Let us evaluate the

third term in Eq. (3.42), i.e., ∇ [(∇ ln ε) ·E] , taken as a perturbation. Let us suppose

that (∇ ln ε) · E varies the most strongly in the direction of a unit vector, ŝ , on the

s coordinate axis,

|∇ [(∇ ln ε) ·E]| ∼
∣∣∣∣ ∂∂s

[(
∂

∂s
ln ε

)
ŝ ·E

]∣∣∣∣
.

∣∣∣∣ ∂∂sE
∣∣∣∣ ∣∣∣∣ ∂∂s ln ε

∣∣∣∣+ |E|
∣∣∣∣ ∂∂s

(
∂

∂s
ln ε

)∣∣∣∣ (3.48)

The first term in Eq. (3.48) is of the order |k1E| =
∣∣∣∣ ∂∂sE

∣∣∣∣ , the second term is of the order

|k0E| = |E| . We restrict ourselves to the case where the second term is negligible with

respect to the first one,∣∣∣∣ ∂∂sE
∣∣∣∣ ∣∣∣∣ ∂∂s ln ε

∣∣∣∣� |E| ∣∣∣∣ ∂∂s
(
∂

∂s
ln ε

)∣∣∣∣ , (3.49)

and compare the first term with the dominating terms of the order |k2E| in Eq. (3.42)∣∣∣∣ ∂∂sE
∣∣∣∣ ∣∣∣∣ ∂∂s ln ε

∣∣∣∣
|k2E|

∼
|kE|

∣∣∣∣1ε ∂ε∂s
∣∣∣∣

|k2E|
∼

∣∣∣∣1ε ∂ε∂s
∣∣∣∣

|k|
.

We evaluate

∣∣∣∣1ε ∂ε∂s
∣∣∣∣ as a relative change of ε on a one wavelength path, λ = 2π/k , inside

the material medium, ∂s ∼ λ

∣∣∣∣1ε ∂ε∂s
∣∣∣∣ ≈

∣∣∣∣∣∣∣∣
1

λ

ε

(
s+

1

2
λ

)
− ε

(
s− 1

2
λ

)
ε (s)

∣∣∣∣∣∣∣∣ .
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This is a relative change of ε on the one wavelength path multiplied by λ−1 . Here

k = 2π/λ . The perturbation term∣∣∣∣1ε ∂ε∂s
∣∣∣∣

|k|
≈ λ

2π

∣∣∣∣∣∣∣∣
1

λ

ε

(
s+

1

2
λ

)
− ε

(
s− 1

2
λ

)
ε (s)

∣∣∣∣∣∣∣∣ ,
is negligible at the condition,

1

2π

∣∣∣∣∣∣∣∣
ε

(
s+

1

2
λ

)
− ε

(
s− 1

2
λ

)
ε (s)

∣∣∣∣∣∣∣∣ � 1 (3.50)

Then it is allowed to remove the perturbation term but in the wave equation ε must be

taken as dependent on r, i.e.,

∇2E + µε (r, ω)E = 0 (3.51)

The case of sharp ε changes on the one λ path, e.g., at the interfaces of two homogeneous

media is adequately treated by using the boundary conditions for E and H according

to Eqs. (3.32) which express the continuity of the E and H components parallel to the

interface or, in other words, the continuity of E and H components perpendicular to

∇ε .

3.3 Waves in media uniform along an axis

We look for monochromatic plane wave solutions to Maxwell equations in media where

ε and µ do not change along an axis. We fix the axis to the z axis and denote β the

component of the propagation vector parallel to the z axis. The material parameters, ε

and µ are therefore independent of z , i.e.,

ε = ε (x, y) , µ = µ (x, y) (3.52)

We substitute the solution in the form

E = E0 (x, y) exp [j (ω t− β z)] (3.53a)

H = H0 (x, y) exp [j (ω t− β z)] (3.53b)

into the Maxwell equations split into the Cartesian components. From the equation

∇×E = −jωµH
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we get after expressing the derivative of time, t , and of the z coordinate,

∂Ez
∂y
− ∂Ey

∂z
= −jωµHx ,

∂Ez
∂y

+ jβEy = −jωµHx (3.54a)

∂Ex
∂z
− ∂Ez

∂x
= −jωµHy , −jβEx −

∂Ez
∂x

= −jωµHy (3.54b)

∂Ey
∂x
− ∂Ex

∂y
= −jωµHz ,

∂Ey
∂x
− ∂Ex

∂y
= −jωµHz (3.54c)

From the equation

∇×H = jωεE

we have

∂Hz

∂y
− ∂Hy

∂z
= jωεEx ,

∂Hz

∂y
+ jβHy = jωεEx (3.54d)

∂Hx

∂z
− ∂Hz

∂x
= jωεEy , −jβHx −

∂Hz

∂x
= jωεEy (3.54e)

∂Hy

∂x
− ∂Hx

∂y
= jωεEz ,

∂Hy

∂x
− ∂Hx

∂y
= jωεEz (3.54f)

Among them, we select those four which express transverse field components, i.e., Ex ,

Ey , Hx and Hy in terms of derivative of Ez a Hz with respect to x a y ,

∂Ez
∂y

+ jβEy = −jωµHx (3.55a)

jβEx +
∂Ez
∂x

= jωµHy (3.55b)

∂Hz

∂y
+ jβHy = jωεEx (3.55c)

jβHx +
∂Hz

∂x
= −jωεEy (3.55d)

We select a group containing Ex and Hy

jβEx − jωµHy = −∂Ez
∂x

(3.56a)

−jωεEx + jβHy = −∂Hz

∂y
(3.56b)

and another group containing Ey and Hx

jβEy + jωµHx = −∂Ez
∂y

(3.56c)

jβHx + jωεEy = −∂Hz

∂x
(3.56d)

The set of four equation is summarized in Table 3.1. The 4 × 4 determinant of the
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Table 3.1: Summary of transverse field components

Ex Hy Ey Hx

jβ −jωµ 0 0 −∂Ez
∂x

−jωε jβ 0 0 −∂Hz

∂y

0 0 jβ jωµ −∂Ez
∂y

0 0 jωε jβ −∂Hz

∂x

equation set can be split into two non zero identical 2× 2 determinants,∣∣∣∣∣∣ jβ −jωµ

−jωε jβ

∣∣∣∣∣∣ =

∣∣∣∣∣∣ jβ jωµ

jωε jβ

∣∣∣∣∣∣ = ω2εµ− β2 (3.57)

where β denotes the longitudinal propagation constant. In homogeneous media, k2 =

ω2εµ = (2π/λ)2 , represents the square of the propagation vector. There are two cases to

be considered,

ω2εµ− β2 ≥ 0 (3.58a)

ω2εµ− β2 ≤ 0 (3.58b)

The square root of the expression in Eq. (3.58a) represents the propagation vector com-

ponent perpendicular to the z axis. We shall call it transverse propagation constant

κ ≡
(
ω2εµ− β2

)1/2
(3.59a)

The square root in Eq. (3.58b) is imaginary pure. The transverse attenuation constant

will be defined by,

γ ≡
(
β2 − ω2εµ

)1/2
(3.59b)
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3.3.1 Transverse fields

From the set of four equations, Eqs. (3.56) we compute as unknown the field components

Ex , Ey , Hx , and Hy

Ex =
1

ω2εµ− β2

∣∣∣∣∣∣∣∣∣∣
−∂Ez
∂x

−jωµ

−∂Hz

∂y
jβ

∣∣∣∣∣∣∣∣∣∣
(3.60)

Ex = − j

ω2εµ− β2

(
β
∂Ez
∂x

+ ωµ
∂Hz

∂y

)
(3.61)

The duality of Eq. (3.30) provides Hx ,

Hx = − j

ω2εµ− β2

(
β
∂Hz

∂x
− ωε∂Ez

∂y

)
(3.62)

Further,

Hy =
1

ω2εµ− β2

∣∣∣∣∣∣∣∣∣∣
jβ −∂Ez

∂x

−jωε −∂Hz

∂y

∣∣∣∣∣∣∣∣∣∣
(3.63)

Hy = − j

ω2εµ− β2

(
β
∂Hz

∂y
+ ωε

∂Ez
∂x

)
(3.64)

and the duality of Eq. (3.30) provides Ey ,

Ey = − j

ω2εµ− β2

(
β
∂Ez
∂y
− ωµ∂Hz

∂x

)
(3.65)

In summary, we get for Ex , Ey , Hx , and Hy ,

Ex = − j

ω2εµ− β2

(
β
∂Ez
∂x

+ ωµ
∂Hz

∂y

)
(3.66a)

Hy = − j

ω2εµ− β2

(
β
∂Hz

∂y
+ ωε

∂Ez
∂x

)
(3.66b)

Ey = − j

ω2εµ− β2

(
β
∂Ez
∂y
− ωµ∂Hz

∂x

)
(3.66c)

Hx = − j

ω2εµ− β2

(
β
∂Hz

∂x
− ωε∂Ez

∂y

)
(3.66d)



68 CHAPTER 3. MAXWELL EQUATIONS

For the condition expressed in Eq. (3.59a), we obtain harmonic solutions,

Ex = − j

κ2

(
β
∂Ez
∂x

+ ωµ
∂Hz

∂y

)
(3.67a)

Hy = − j

κ2

(
β
∂Hz

∂y
+ ωε

∂Ez
∂x

)
(3.67b)

Ey = − j

κ2

(
β
∂Ez
∂y
− ωµ∂Hz

∂x

)
(3.67c)

Hx = − j

κ2

(
β
∂Hz

∂x
− ωε∂Ez

∂y

)
(3.67d)

Evanescent solutions result from the condition expressed by Eq. (3.59b),

Ex =
j

γ2

(
β
∂Ez
∂x

+ ωµ
∂Hz

∂y

)
(3.68a)

Hy =
j

γ2

(
β
∂Hz

∂y
+ ωε

∂Ez
∂x

)
(3.68b)

Ey =
j

γ2

(
β
∂Ez
∂y
− ωµ∂Hz

∂x

)
(3.68c)

Hx =
j

γ2

(
β
∂Hz

∂x
− ωε∂Ez

∂y

)
(3.68d)

3.3.2 Alternative derivation of transverse fields

The operator ∇ employed in the Maxwell equations

∇×E = −jωµH ,

∇×H = jωεE ,

can be split into a transverse and a longitudinal parts.4

∇ = ∇t + ẑ
∂

∂z
(3.70)

Also the field vectors, E and H can be split into a transverse and a longitudinal parts,

E = Et + ẑEz

H = H t + ẑHz (3.71)

i.e., (
∇t + ẑ

∂

∂z

)
× (Et + ẑEz) = −jωµ (H t + ẑHz)(

∇t + ẑ
∂

∂z

)
× (H t + ẑHz) = jωε (Et + ẑEz) .

4Jin Au Kong, Electromagnetic Wave Theory, EMW Publishing, Cambridge, Massachusetts, USA

2000, p. 439.
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This can be rearranged,

∇t × ẑEz + ẑ × ∂

∂z
Et = −jωµH t (3.72a)

∇t × ẑHz + ẑ × ∂

∂z
H t = jωεEt (3.72b)

∇t ×Et = −jωµẑHz (3.72c)

∇t ×H t = jωεẑEz (3.72d)

The use has been made of the identities,

ẑ × (ẑ ×Et) = −Et (3.73)

and

ẑ × (∇t × ẑEz) = −ẑ × (ẑ ×∇tEz) = ∇tEz (3.74)

In the Cartesian coordinates, we have ∇t = x̂
∂

∂x
+ ŷ

∂

∂y
,

ẑ × (∇t × ẑEz) = ẑ ×
(
x̂× ẑ

∂

∂x
Ez

)
+ ẑ ×

(
ŷ × ẑ

∂

∂y
Ez

)
= ẑ ×

(
−ŷ ∂

∂x
Ez

)
+ ẑ ×

(
x̂
∂

∂y
Ez

)
= x̂

∂

∂x
Ez + ŷ

∂

∂y
Ez

= ∇tEz

We multiply Eq. (3.72a) by jωε . Then we take the derivative,
∂

∂z
, of Eq. (3.72b) and

multiply the result by ẑ× ,

jωε (∇t × ẑEz) +jωε

(
ẑ × ∂

∂z
Et

)
= ω2µεH t (3.75a)

ẑ ×
(
∇t × ẑ

∂

∂z
Hz

)
+ ẑ ×

(
ẑ × ∂2

∂z2
H t

)
= jωε

(
ẑ × ∂

∂z
Et

)
(3.75b)

We eliminate the underlined expression, jωε

(
ẑ × ∂

∂z
Et

)
,

jωε (∇t × ẑEz) + ẑ ×
(
∇t × ẑ

∂

∂z
Hz

)
+ ẑ ×

(
ẑ × ∂2

∂z2
H t

)
= ω2µεH t

(3.76)

Next, we make use of Eqs. (3.73) and (3.74),

jωε (∇t × ẑEz) +∇t
∂

∂z
Hz −

∂2

∂z2
H t = ω2µεH t (3.77)
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and of the relation,
∂2

∂z2
= −β2

H t =
1

(ω2µε− β2)

[
∇t

∂

∂z
Hz + jωε (∇t × ẑEz)

]
(3.78)

The duality transformation provides the result summarized as,

Et =
1

(ω2µε− β2)

[
∇t

(
∂Ez
∂z

)
− jωε (∇t × ẑHz)

]
(3.79a)

H t =
1

(ω2µε− β2)

[
∇t

(
∂Hz

∂z

)
+ jωε (∇t × ẑEz)

]
(3.79b)

Using
∂

∂z
→ −jβ ,

Et =
1

(ω2µε− β2)
[−jβ (∇tEz)− jωε (∇t × ẑHz)] (3.80a)

H t =
1

(ω2µε− β2)
[−jβ (∇tHz) + jωε (∇t × ẑEz)] (3.80b)

3.4 Waves in planarly layered media

Planar structures may be defined as structures homogeneous along two Cartesian axes.

So far, we have considered the structures varying along two Cartesian axes, x and y ,

characterized by the parameters, ε = ε (x, y) and µ = µ (x, y) and independent on the

z coordinate. In planar structures, these parameters vary along a single axis, identified

here with the x axis. We therefore set ε = ε (x) and µ = µ (x) . We will show that

under these circumstances that the vector wave equations, Eqs. (3.34), split into two

independent pairs.5 Any solution to the vector wave equations in planar isotropic media

can be expressed as a linear combination of the solutions to scalar wave equations for

transverse electric (TE) and transverse magnetic (TM) waves.

3.4.1 Scalar wave equation

To derive the scalar wave equation, we start Eqs. (3.34)

µ∇×
[
µ−1 (∇×E)

]
−µεω2E = 0 , (3.81a)

ε∇×
[
ε−1 (∇×H)

]
−µεω2H = 0 , (3.81b)

5Weng Cho Chew, Waves and Fields in Inhomogeneous Media, IEEE Press Series on Electromagnetic

Waves, 1995, p. 45
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and assume E and H linearly polarized. We set the axis of non homogeneity into the

x axis of a Cartesian coordinate system, i.e., ε = ε (x) and µ = µ (x) . With an appro-

priate rotation transformation, we set the electric field corresponding to the solution of

Eq. (3.81a) for TE waves parallel to y axis, E = ŷEy . With a similar procedure, we

set the magnetic field corresponding to the solution of Eq. (3.81b) for TM waves oriented

parallel to y axis.

From Eqs. (3.29c) and (3.29d)

∇ · (εE) = ∇ · [ε(x)ŷEy] = 0 , (3.82a)

∇ · (µH) = ∇ · [µ(x)ŷHy] = 0 , (3.82b)

it is obvious that the derivatives ∂E/∂y = ŷ∂Ey/∂y in Eq. (3.81a) and the derivatives

∂H/∂y = ŷ∂Hy/∂y in Eq. (3.81b) are zero,

∂Ey
∂y

= 0 (3.83a)

∂Hy

∂y
= 0 (3.83b)

We take into account,

∇×E = ∇× (ŷEy) =

∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

0 Ey 0

∣∣∣∣∣∣∣∣∣∣
(3.84a)

and,

∇×H = ∇× (ŷHy) =

∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

0 Hy 0

∣∣∣∣∣∣∣∣∣∣
(3.84b)

The developments of the first terms in Eqs. (3.81) provide,

µ(x)
[
∇µ−1(x)

]
× (∇×E) +∇× (∇×E)−µ(x)ε(x)ω2E = 0

(3.85a)

ε(x)
[
∇ε−1(x)

]
× (∇×H) +∇× (∇×H)−µ(x)ε(x)ω2H = 0

(3.85b)
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We employ the identity ∇× (∇×E) = ∇ (∇ ·E)−∇2E and obtain,

µ(x)
[
∇µ−1(x)

]
× (∇×E) +∇ (∇ ·E)−∇2E −µ(x)ε(x)ω2E = 0

(3.86a)

Similarly, by making use of the same identity for H ∇× (∇×H) = ∇ (∇ ·H)−∇2H

we get

ε(x)
[
∇ε−1(x)

]
× (∇×H) +∇ (∇ ·H)−∇2H −µ(x)ε(x)ω2H = 0

(3.86b)

By exploiting the independence of E = ŷEy and H = ŷHy on y expressed in Eqs. (3.83),

and by making use of Eq. (3.84), we have

x̂µ(x)
∂µ−1(x)

∂x
×
(
ẑ
∂Ey
∂x
− x̂

∂Ey
∂z

)
− ŷ

∂2Ey
∂z2

− ŷ
∂2Ey
∂x2

−ŷµ(x)ε(x)ω2Ey = 0

(3.87a)

x̂ε(x)
∂ε−1(x)

∂x
×
(
ẑ
∂Hy

∂x
− x̂

∂Hy

∂z

)
− ŷ

∂2Hy

∂z2
− ŷ

∂2Hy

∂x2
−ŷµ(x)ε(x)ω2Hy = 0

(3.87b)

or,

−ŷµ(x)
∂µ−1(x)

∂x

∂Ey
∂x
− ŷ

∂2Ey
∂z2

− ŷ
∂2Ey
∂x2

−ŷµ(x)ε(x)ω2Ey = 0

−ŷε(x)
∂ε−1(x)

∂x

∂Hy

∂x
− ŷ

∂2Hy

∂z2
− ŷ

∂2Hy

∂x2
−ŷµ(x)ε(x)ω2Hy = 0

We have arrived at scalar equations

µ(x)
∂µ−1(x)

∂x

∂Ey
∂x

+
∂2Ey
∂z2

+
∂2Ey
∂x2

+ µ(x)ε(x)ω2Ey = 0

(3.89a)

ε(x)
∂ε−1(x)

∂x

∂Hy

∂x
+
∂2Hy

∂z2
+
∂2Hy

∂x2
+ µ(x)ε(x)ω2Hy = 0

(3.89b)

Alternatively, they can be expressed,

µ(x)
∂

∂x

[
µ−1(x)

∂Ey
∂x

]
+
∂2Ey
∂z2

+ µ(x)ε(x)ω2Ey = 0 (3.90a)

ε(x)
∂

∂x

[
ε−1(x)

∂Hy

∂x

]
+
∂2Hy

∂z2
+ µ(x)ε(x)ω2Hy = 0 (3.90b)
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or, {
∂2

∂z2
+ µ(x)

∂

∂x

[
µ−1(x)

∂

∂x

]
+ µ(x)ε(x)ω2

}
Ey = 0 (3.91a)

{
∂2

∂z2
+ ε(x)

∂

∂x

[
ε−1(x)

∂

∂x

]
+ µ(x)ε(x)ω2

}
Hy = 0 (3.91b)

From the Maxwell equations, Eqs. (3.29), it follows in planar structures where E = ŷEy ,

ẑ
∂Ey
∂x
− x̂

∂Ey
∂z

= −jωµ(x)H

ŷ
∂Hx

∂z
− ŷ

∂Hz

∂x
= jωε(x)ŷEy

that the only remaining non zero field components areHz andHx . From the independence

of Ey on y , given by Eq. (3.83a) as a conclusion of Eq. (3.82a), it is obvious that both

Hz and Hx are independent of y

∂Hz

∂y
= 0 ,

∂Hx

∂y
= 0

In a similar way, we get from the Maxwell equations in planar structures, Eqs. (3.29),

where H = ŷHy ,

ẑ
∂Hy

∂x
− x̂

∂Hy

∂z
= jωε(x)E

ŷ
∂Ex
∂z
− ŷ

∂Ez
∂x

= −jωµ(x)ŷHy

that the only non zero field components associated with H = ŷHy are Ez and Ex . From

the independence of y of Hy given by Eq. (3.83b) as a consequence of Eq. (3.82b) it is

obvious that also the field components Ez and Ex are independent of y ,

∂Ez
∂y

= 0 ,
∂Ex
∂y

= 0 .

In our planar structure with ε = ε (x) and µ = µ (x) , all components of E and H

are independent of y . Consequently,

∂

∂y
= 0 (3.92)

with the corresponding form of ∇ = x̂
∂

∂x
+ ẑ

∂

∂z
.
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Table 3.2: Field in planar structures.

Ex Hy Ey Hx

jβ −jωµ 0 0 −dEz
dx

−jωε jβ 0 0 0

0 0 jβ jωµ 0

0 0 jωε jβ −dHz

dx

Table 3.3: TE and TM modes in planar structures.

TE Hx Ey Hz

TM Ex Hy Ez

3.4.2 TE and TM modes

We conclude that in planar structures the set of four Maxwell equations, Eqs. (3.56),

for transverse fields splits into two sets of mutually independent sets of two equations

as shown in Table 3.2. The six field components are classified into two groups, The TE

group with Ez = 0 and TM group with Hz = 0, according to Table 3.3.



Chapter 4

Optical fibers

4.1 Introduction

Optical fibers represent dielectric cylindrical waveguides most often of circular cross sec-

tion employed to the propagation of electromagnetic waves in the infrared and visible

spectral regions.1 We wish to determine the conditions for the wave propagation in

the optical fibers. As we focus on circular cylindrical waveguides fibers, we employ the

Maxwell equation and Helmholtz wave equations in circular cylinder representation. The

transverse profile, i.e., the dependence on radial coordinate, % , of the electromagnetic

parameters, electric permittivity, ε (%) and magnetic permeability, µ (%) , may be rather

complicated. It is determined by the requirement on the wave mode properties in a

particular fiber. The waveguiding in circular cylindrical waveguides similarly to that in

planar symmetric waveguides is characterized by zero cut-off frequency/thickness for the

fundamental mode.

The analysis can be performed analytically to the highest degree for a waveguide con-

sisting of a homogeneous core and a homogeneous cladding bound by circular cylindrical

surfaces with a common axis.2 Their radii are denoted as a1 and a2 , a1 < a2 . The ho-

mogeneous core region, 0 ≤ % ≤ a1 is characterized by ε1 and µ1 and by a corresponding

real index of refraction, n1 . The homogeneous cladding occupies the region a1 ≤ % ≤ a2

characterized by ε2 and µ2 and by a corresponding real index of refraction, n2 < n1

(Figure 4.1). This is a fiber waveguide with a step profile of ε(%) and µ(%) i.e., with

a step index profile, n(%) . The notation may be simplified by taking a1 ≡ a and by

assuming a2 → ∞ . Indeed, in a reasonably designed optical waveguide, the radius, a2

must be chosen sufficiently high in order to make the evanescent wave penetration into

1Optical fibers of elliptical cross sections present interest in the applications where the wave polariza-

tion must be stabilized.
2D. Marcuse, Light Transmission Optics, Van Nostrand Reinhold Company, New York 1972, pp.

286–305
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outer medium negligible. This justifies the approximation a2 →∞ . The present chapter

is devoted to the analysis of this step index profile optical fiber.

4.2 Field equations in circular cylinder coordinates

4.2.1 Unit vectors

The unit vectors in circular cylinder coordinates are related to the Cartesian unit vectors

by the relations,

%̂ = x̂ cosϕ+ ŷ sinϕ/ · cosϕ/ · sinϕ
ϕ̂ = −x̂ sinϕ+ ŷ cosϕ/ · (− sinϕ)/ · cosϕ (4.1a)

ẑ = ẑ

The inverse transformation requires

%̂ cosϕ− ϕ̂ sinϕ = x̂

%̂ sinϕ+ ϕ̂ cosϕ = ŷ (4.1b)

ẑ = ẑ

a1

a2

n2

ε2 µ2

n1

ε1 µ1�
Figure 4.1: Cross section of a circular cylindrical dielectric waveguide.
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ϕ

ϕ

x̂

ŷ
%̂

ϕ̂�
Figure 4.2: Cartesian and circular cylinder unit vectors are related by a transformation of

rotation about the z axis. The z axis is perpendicular to the page and the unit vector ẑ is

oriented out of the page.

The unit vectors, %̂ and ϕ̂ depend on the azimuthal angle, ϕ

∂

∂ϕ
%̂ = ϕ̂ , (4.2a)

∂

∂ϕ
ϕ̂ = −%̂ (4.2b)

The vector products of unit vectors are given by %̂× ϕ̂ = ẑ , ϕ̂× ẑ = %̂ a ẑ × %̂ = ϕ̂ .

4.2.2 Operator ∇ in circular cylindrical coordinates

Let us remember the operator ∇ in the Cartesian coordinates. For a scalar function of

position, u = u (x, y, z) , the total differential becomes,

du =
∂u

∂x
dx+

∂u

∂y
dy +

∂u

∂z
dz

product of two vectors,

du = dr · ∇u = (x̂ dx+ ŷ dy + ẑ dz) ·
(
x̂
∂u

∂x
+ ŷ

∂u

∂y
+ ẑ

∂u

∂z

)
From this, we can deduced the gradient of the scalar function u(r) of a position vector,

r = xx̂ + yŷ + zẑ ,

∇u = x̂
∂u

∂x
+ ŷ

∂u

∂y
+ ẑ

∂u

∂z
(4.3)

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(4.4)

the differential operators in circular cylinder coordinates. If u = u (%, ϕ, z) represents

a scalar function of position, then its total differential becomes,

du =
∂u

∂%
d%+

∂u

∂ϕ
dϕ+

∂u

∂z
dz
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be expressed as a scalar product of two vectors

du = dr · ∇u = (%̂d%+ ϕ̂% dϕ+ ẑ dz) ·
(
%̂
∂u

∂%
+ ϕ̂

1

%

∂u

∂ϕ
+ ẑ

∂u

∂z

)
From this, it follows for the gradient of a scalar function u(r) of a position vector r =

%%̂ + zẑ ,

∇u = %̂
∂u

∂%
+ ϕ̂

1

%

∂u

∂ϕ
+ ẑ

∂u

∂z
(4.5)

∇ = %̂
∂

∂%
+ ϕ̂

1

%

∂

∂ϕ
+ ẑ

∂

∂z
(4.6)

To find the relations between the Cartesian and circular cylinder differential operation,

we compare the expressions for ∇

∇xyz = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (4.7)

and,

∇%ϕz = %̂
∂

∂%
+ ϕ̂

1

%

∂

∂ϕ
+ ẑ

∂

∂z
(4.8)

where x = % cosϕ , y = % sinϕ and z = z . The scalar products (Figure 4.2) are given by,

%̂ · x̂ = cosϕ , ϕ̂ · x̂ = − sinϕ (4.9a)

%̂ · ŷ = sinϕ , ϕ̂ · ŷ = cosϕ (4.9b)

The derivatives with respect to % and ϕ can be expressed in terms of the derivatives with

respect to x and y ,

∂

∂%
= %̂ · ∇%ϕz = %̂ · ∇xyz

= (%̂ · x̂)
∂

∂x
+ (%̂ · ŷ)

∂

∂y

= cosϕ
∂

∂x
+ sinϕ

∂

∂y
(4.10a)

1

%

∂

∂ϕ
= ϕ̂ · ∇%ϕz = ϕ̂ · ∇xyz

= (ϕ̂ · x̂)
∂

∂x
+ (ϕ̂ · ŷ)

∂

∂y

= − sinϕ
∂

∂x
+ cosϕ

∂

∂y
(4.10b)



4.2. FIELD EQUATIONS IN CIRCULAR CYLINDER COORDINATES 79

This can be concisely written in a matrix form,
∂

∂%

1

%

∂

∂ϕ

 =

 cosϕ sinϕ

− sinϕ cosϕ




∂

∂x

∂

∂y

 (4.11)

The inverse transformation, i.e. the derivatives with respect to x and y expressed in

terms of the derivatives with respect to % and ϕ ,

∂

∂x
= x̂ · ∇xyz = x̂ · ∇%ϕz

= (x̂ · %̂)
∂

∂%
+ (x̂ · ϕ̂)

1

%

∂

∂ϕ

= cosϕ
∂

∂%
− sinϕ

%

∂

∂ϕ
(4.12a)

∂

∂y
= ŷ · ∇xyz = ŷ · ∇%ϕz

= sinϕ
∂

∂%
+

cosϕ

%

∂

∂ϕ
(4.12b)

or in a matrix form,
∂

∂x

∂

∂y

 =

 cosϕ − sinϕ

sinϕ cosϕ




∂

∂%

1

%

∂

∂ϕ

 . (4.13)

4.2.3 Vector field in circular cylindrical coordinates

The vector field in circular cylinder coordinates follows from the transformation of the

Cartesian field,

A (r) = Axx̂ + Ayŷ + Azẑ

= A%%̂ + Aϕϕ̂ + Azẑ

using the relations (Figures 4.3 and 4.4)

A% = Ax cosϕ+ Ay sinϕ (4.14a)

Aϕ = −Ax sinϕ+ Ay cosϕ (4.14b)
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ϕ

A(r)

Aϕ

A%

Ax

Ay

r

xO

y�
Figure 4.3: The vector field A(r) in the point determined by the position vector r = %%̂

decomposed into the Cartesian and circular cylinder component.

4.2.4 Maxwell equations

We start from the Maxwell equations in a linear, isotropic, lossless, nondispersive, and

homogeneous medium with a zero free charge and free current densities, i.e., in a source

free region3

∇×E = −µ ∂
∂t

H ,

∇×H = ε
∂

∂t
E ,

∇ ·E = 0 ,

∇ ·H = 0 .

For a time, t , harmonic dependence accounted for by a factor exp (jωt) the Maxwell

equations assume the form,

∇×E = −jωµH , (4.16a)

∇×H = jωεE , (4.16b)

∇ ·E = 0 , (4.16c)

∇ ·H = 0 . (4.16d)

3The sources responsible for the generation of the field are located outside the considered region.
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ϕ

A

A% = Ax cosϕ+ Ay sinϕ

Aϕ = −Ax sinϕ+ Ay cosϕ

Aϕ
Aϕ

A%

A%

Ax

Ay

Ay

Ax sinϕ

Ay cosϕ
Ax cosϕ

Ay sinϕ

ϕ

ϕ

r

xO

y�
Figure 4.4: A two dimensional Cartesian vector field A(r) = A (xx̂ + yŷ) transformed into

the circular cylinder coordinates A(r) = A(%̂%) in the plane perpendicular to the z axis.

The fields can be decomposed into the components parallel to the unit vector of circular

cylinder coordinates,

E = E%%̂ + Eϕϕ̂ + Ezẑ (4.17a)

H = H%%̂ +Hϕϕ̂ +Hzẑ (4.17b)

The Maxwell equations (4.16) can be expressed decomposed into the components using

Eq. (4.4) for the operator ∇ in circular cylinder coordinates,

1

%

∂

∂ϕ
Ez −

∂

∂z
Eϕ = −µ ∂

∂t
H% (4.18a)

∂

∂z
E% −

∂

∂%
Ez = −µ ∂

∂t
Hϕ (4.18b)

1

%

[
∂

∂%
(%Eϕ)− ∂

∂ϕ
E%

]
= −µ ∂

∂t
Hz (4.18c)

1

%

∂

∂ϕ
Hz −

∂

∂z
Hϕ = ε

∂

∂t
E% , (4.18d)

∂

∂z
H% −

∂

∂%
Hz = ε

∂

∂t
Eϕ , (4.18e)

1

%

[
∂

∂%
(%Hϕ)− ∂

∂ϕ
H%

]
= ε

∂

∂t
Ez , (4.18f)
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The dependence of the unit vectors on the azimuthal angle, ϕ , given in Eqs. (4.2),

∂

∂ϕ
%̂ = ϕ̂ , (4.19a)

∂

∂ϕ
ϕ̂ = −%̂ (4.19b)

and the vector products of the unit vectors, i.e., %̂× ϕ̂ = ẑ , ϕ̂× ẑ = %̂ and ẑ × %̂ = ϕ̂

have been taken into account. In homogeneous media in the absence of free charges, the

scalar Maxwell equation, not relevant for the present purpose, take the form

∇ ·E =
∂

∂%
E% +

1

%
E% +

1

%

∂

∂ϕ
Eϕ +

∂

∂z
Ez = 0 , (4.20a)

∇ ·H =
∂

∂%
H% +

1

%
H% +

1

%

∂

∂ϕ
Hϕ +

∂

∂z
Hz = 0 . (4.20b)

With the restriction to the harmonic time dependence, Eqs. (4.18) are transformed into

the form,

1

%

∂

∂ϕ
Ez −

∂

∂z
Eϕ = −jωµH% (4.21a)

∂

∂z
E% −

∂

∂%
Ez = −− jωµHϕ (4.21b)

1

%

[
∂

∂%
(%Eϕ)− ∂

∂ϕ
E%

]
= −jωµHz (4.21c)

1

%

∂

∂ϕ
Hz −

∂

∂z
Hϕ = jωεE% , (4.21d)

∂

∂z
H% −

∂

∂%
Hz = jωεEϕ , (4.21e)

1

%

[
∂

∂%
(%Hϕ)− ∂

∂ϕ
H%

]
= jωεEz , (4.21f)

The account of the harmonic dependence on both time and the z coordinate expressed

by the factor exp j (ωt− βz) in Eqs. (4.21) provides,

1

%

∂

∂ϕ
Ez + jβEϕ = −jωµH% (4.22a)

−jβE% −
∂

∂%
Ez = −jωµHϕ (4.22b)

1

%

[
∂

∂%
(%Eϕ)− ∂

∂ϕ
E%

]
= −jωµHz (4.22c)

1

%

∂

∂ϕ
Hz + jβHϕ = jωεE% , (4.22d)

−jβH% −
∂

∂%
Hz = jωεEϕ , (4.22e)

1

%

[
∂

∂%
(%Hϕ)− ∂

∂ϕ
H%

]
= jωεEz , (4.22f)
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The transverse field components, E% , Eϕ , H% , andHϕ are related to the corresponding

Cartesian components,

E% = Ex cosϕ+ Ey sinϕ (4.23a)

Eϕ = −Ex sinϕ+ Ey cosϕ (4.23b)

H% = Hx cosϕ+Hy sinϕ (4.23c)

Hϕ = −Hx sinϕ+Hy cosϕ (4.23d)

We also list the inverse relations, the Cartesian field components, Ex , Ey , Hx , and Hy

in terms of the corresponding components E% , Eϕ , H% , and Hϕ

Ex = E% cosϕ− Eϕ sinϕ (4.24a)

Ey = E% sinϕ+ Eϕ cosϕ (4.24b)

Hx = H% cosϕ−Hϕ sinϕ (4.24c)

Hy = H% sinϕ+Hϕ cosϕ (4.24d)

The transformation from the Cartesian coordinates into the circular cylinder coordinates,

it is advantageous to employ the matrix presented in Eq. (4.11)

R (ϕ) =

 cosϕ sinϕ

− sinϕ cosϕ

 (4.25)

The matrix transforms the unit vectors in Eq. (4.1) %̂

ϕ̂

 =

 cosϕ sinϕ

− sinϕ cosϕ

 x̂

ŷ

 (4.26)

In the matrix form, Eqs. (4.23) can be written as follows, E%

Eϕ

 =

 cosϕ sinϕ

− sinϕ cosϕ

 Ex

Ey

 (4.27a)

 H%

Hϕ

 =

 cosϕ sinϕ

− sinϕ cosϕ

 Hx

Hy

 (4.27b)

The same 2×2 matrix relates the derivatives of z components in agreement with Eq. (4.11)


∂Ez
∂%

1

%

∂Ez
∂ϕ

 =

 cosϕ sinϕ

− sinϕ cosϕ




∂Ez
∂x

∂Ez
∂y

 (4.28a)
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
∂Hz

∂%

1

%

∂Hz

∂ϕ

 =

 cosϕ sinϕ

− sinϕ cosϕ




∂Hz

∂x

∂Hz

∂y

 (4.28b)

The inverse transform employs the matrix,

R−1 (ϕ) =

 cosϕ − sinϕ

sinϕ cosϕ

 (4.29)

The unit vectors transform according to Eq. (4.1) x̂

ŷ

 =

 cosϕ − sinϕ

sinϕ cosϕ

 %̂

ϕ̂

 (4.30)

The transform inverse to the transform in Eqs. (4.27), Ex

Ey

 =

 cosϕ − sinϕ

sinϕ cosϕ

 E%

Eϕ

 (4.31a)

 Hx

Hy

 =

 cosϕ − sinϕ

sinϕ cosϕ

 H%

Hϕ

 (4.31b)

The transform inverse to the transform of derivatives in Eqs. (4.28) becomes,
∂Ez
∂x

∂Ez
∂y

 =

 cosϕ − sinϕ

sinϕ cosϕ




∂Ez
∂%

1

%

∂Ez
∂ϕ

 (4.32a)


∂Hz

∂x

∂Hz

∂y

 =

 cosϕ − sinϕ

sinϕ cosϕ




∂Hz

∂%

1

%

∂Hz

∂ϕ

 (4.32b)

In the Cartesian coordinates, the transverse field x and y components may be expressed

in terms of the derivatives of the longitudinal field components as in Eqs. (3.66) valid for
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the solutions proportional to the factor exp[j(ωt− βz)] ,

Ex = −j
1

ω2εµ− β2

(
β
∂Ez
∂x

+ ωµ
∂Hz

∂y

)
(4.33a)

Ey = −j
1

ω2εµ− β2

(
β
∂Ez
∂y
− ωµ∂Hz

∂x

)
(4.33b)

Hx = −j
1

ω2εµ− β2

(
β
∂Hz

∂x
− ωε∂Ez

∂y

)
(4.33c)

Hy = −j
1

ω2εµ− β2

(
β
∂Hz

∂y
+ ωε

∂Ez
∂x

)
(4.33d)

The transform to the circular cylinder coordinates provides,

E% = Ex cosϕ+ Ey sinϕ

= −j
1

ω2εµ− β2

[
cosϕ

(
β
∂Ez
∂x

+ ωµ
∂Hz

∂y

)
+ sinϕ

(
β
∂Ez
∂y
− ωµ∂Hz

∂x

)]
= −j

1

ω2εµ− β2

[
β

(
cosϕ

∂Ez
∂x

+ sinϕ
∂Ez
∂y

)
+ ωµ

(
cosϕ

∂Hz

∂y
− sinϕ

∂Hz

∂x

)]

= −j
1

ω2εµ− β2


β

(
cosϕ

∂

∂x
+ sinϕ

∂

∂y

)
︸ ︷︷ ︸

∂

∂%

Ez + ωµ

(
cosϕ

∂

∂y
− sinϕ

∂

∂x

)
︸ ︷︷ ︸

1

%

∂

∂ϕ

Hz


= −j

1

ω2εµ− β2

(
β
∂Ez
∂%

+ ωµ
1

%

∂Hz

∂ϕ

)
,

Eϕ = −Ex sinϕ+ Ey cosϕ

= −j
1

ω2εµ− β2

[
− sinϕ

(
β
∂Ez
∂x

+ ωµ
∂Hz

∂y

)
+ cosϕ

(
β
∂Ez
∂y
− ωµ∂Hz

∂x

)]
= −j

1

ω2εµ− β2

[
β

(
− sinϕ

∂Ez
∂x

+ cosϕ
∂Ez
∂y

)
+ ωµ

(
sinϕ

∂Hz

∂y
+ cosϕ

∂Hz

∂x

)]

= −j
1

ω2εµ− β2


β

(
− sinϕ

∂

∂x
+ cosϕ

∂

∂y

)
︸ ︷︷ ︸

1

%

∂

∂ϕ

Ez + ωµ

(
sinϕ

∂

∂y
+ cosϕ

∂

∂x

)
︸ ︷︷ ︸

∂

∂%

Hz


= −j

1

ω2εµ− β2

(
β

1

%

∂Ez
∂ϕ
− ωµ∂Hz

∂%

)
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The use has been made of Eqs. (4.10).4 The results for H% and Hϕ follows from the

duality transform according to Eq. (3.30).

In summary, the relations for transverse field components are listed bellow,

E% = −j
1

ω2εµ− β2

(
β
∂Ez
∂%

+ ωµ
1

%

∂Hz

∂ϕ

)
, (4.34a)

Eϕ = −j
1

ω2εµ− β2

(
β

1

%

∂Ez
∂ϕ
− ωµ∂Hz

∂%

)
, (4.34b)

H% = −j
1

ω2εµ− β2

(
β
∂Hz

∂%
− ωε1

%

∂Ez
∂ϕ

)
, (4.34c)

Hϕ = −j
1

ω2εµ− β2

(
β

1

%

∂Hz

∂ϕ
+ ωε

∂Ez
∂%

)
. (4.34d)

Alternatively, Eqs. (4.34) can be deduced from Eqs. (3.80) using the transverse gradient

operator, ∇t = %̂
∂

∂%
+ ϕ̂

1

%

∂

∂ϕ
, extracted from Eq. (4.8).

4.2.5 Helmholtz equations

In linear isotropic homogeneous non dispersive media, the wave equations for the vector

wave fields, E and H are given by,

∇× (∇×E) = −µε ∂
2

∂t2
E (4.35a)

∇× (∇×H) = −µε ∂
2

∂t2
H (4.35b)

where ∇ × (∇×E) = ∇ (∇ ·E) − ∇2E a ∇ × (∇×H) = ∇ (∇ ·H) − ∇2H . For

∇·E = 0 and ∇·H = 0 in the absence of free charges and free currents in homogeneous

media according to Eq. (3.41), and the harmonic time dependence of monochromatic

wave fields accounted for by the conventional factor exp(jωt) , we get

∇2E + ω2µεE = 0 (4.36a)

∇2H + ω2µεH = 0 (4.36b)

Here ∇2 denotes the Laplacian which in circular cylindrical coordinates assumes the form

∇2 =
1

%

∂

∂%

(
%
∂

∂%

)
+

1

%2

∂2

∂ϕ2
+

∂2

∂z2

or more conveniently,

∇2 =
∂2

∂%2
+

1

%

∂

∂%
+

1

%2

∂2

∂ϕ2
+

∂2

∂z2
(4.37)

4Eϕ can be deduced from E% by the exchange
∂

∂%
→ 1

%

∂

∂ϕ
and

1

%

∂

∂ϕ
→ − ∂

∂%
.
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We should not forget to account the dependence of the unit vectors, %̂ and ϕ̂ on the

azimuthal angle, ϕ , in Eqs. (4.19). The Laplacian, ∇2 applied to a vector function of

position E (r) provides,

∇2E = %̂

(
∇2E% −

2

%2

∂Eϕ
∂ϕ
− E%
%2

)
+ ϕ̂

(
∇2Eϕ +

2

%2

∂E%
∂ϕ
− Eϕ
%2

)
+ ẑ∇2Ez

Equation (4.36a) for the electric field vector developed in circular cylinder components

displayed in detail becomes,

0 =

(
1

%

∂

∂%
%
∂

∂%
+

1

%2

∂2

∂ϕ2
+

∂2

∂z2
+ ω2µε

)
(%̂E% + ϕ̂Eϕ + ẑEz)

= %̂

[(
1

%

∂

∂%
%
∂

∂%

)
E% +

1

%2

∂2

∂ϕ2
E% +

∂2

∂z2
E% −

1

%2

(
E% + 2

∂Eϕ
∂ϕ

)
+ ω2µεE%

]
+ ϕ̂

[(
1

%

∂

∂%
%
∂

∂%

)
Eϕ +

1

%2

∂2

∂ϕ2
Eϕ +

∂2

∂z2
Eϕ −

1

%2

(
Eϕ − 2

∂E%
∂ϕ

)
+ ω2µεEϕ

]
+ ẑ

[(
1

%

∂

∂%
%
∂

∂%

)
Ez +

1

%2

∂2

∂ϕ2
Ez +

∂2

∂z2
Ez + ω2µεEz

]
= %̂

[
∇2E% −

1

%2

(
E% + 2

∂Eϕ
∂ϕ

)
+ ω2µεE%

]
+ ϕ̂

[
∇2Eϕ −

1

%2

(
Eϕ − 2

∂E%
∂ϕ

)
+ ω2µεEϕ

]
(4.38a)

The same procedures provides for the vector magnetic field,

∇2H = %̂

(
∇2H% −

2

%2

∂Hϕ

∂ϕ
− H%

%2

)
+ ϕ̂

(
∇2Hϕ +

2

%2

∂H%

∂ϕ
− Hϕ

%2

)
+ ẑ∇2Hz

After the substitution into Eq. (4.36b), we have,

0 =

(
1

%

∂

∂%
%
∂

∂%
+

1

%2

∂2

∂ϕ2
+

∂2

∂z2
+ ω2µε

)
(%̂H% + ϕ̂Hϕ + ẑHz)

= %̂

[(
1

%

∂

∂%
%
∂

∂%

)
H% +

1

%2

∂2

∂ϕ2
H% +

∂2

∂z2
H% −

1

%2

(
H% + 2

∂Hϕ

∂ϕ

)
+ ω2µεH%

]
+ ϕ̂

[(
1

%

∂

∂%
%
∂

∂%

)
Hϕ +

1

%2

∂2

∂ϕ2
Hϕ +

∂2

∂z2
Hϕ −

1

%2

(
Hϕ − 2

∂H%

∂ϕ

)
+ ω2µεHϕ

]
+ ẑ

[(
1

%

∂

∂%
%
∂

∂%

)
Hz +

1

%2

∂2

∂ϕ2
Hz +

∂2

∂z2
Hz + ω2µεHz

]
= %̂

[
∇2H% −

1

%2

(
H% + 2

∂Hϕ

∂ϕ

)
+ ω2µεH%

]
+ ϕ̂

[
∇2Hϕ −

1

%2

(
Hϕ − 2

∂H%

∂ϕ

)
+ ω2µεHϕ

]
+ ẑ

[
∇2Hz + ω2µεHz

]
(4.38b)
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In Eq. (4.38a), the component parallel to %̂ involves not only the field component E% ,

i.e., E% (%, ϕ, z, t) , but also the field component Eϕ (%, ϕ, z, t) . Likewise, the component

parallel to ϕ̂ contains in addition to the field component Eϕ (%, ϕ, z, t) , the field compo-

nent E% (%, ϕ, z, t) . The same situation takes place in Eq. (4.38b). The solutions for the

harmonic waves traveling parallel to the z axis with the increasing z coordinate applied

in the waveguiding studies already employed in Eqs. (3.53) become,

E = E0 exp [j (ωt− βz)] (4.39a)

H = H0 exp [j (ωt− βz)] (4.39b)

We have therefore to confine ourselves to find the solutions for the Ez and Hz components

Ez = Ez0 exp [j (ωt− βz)] (4.40a)

Hz = Hz0 exp [j (ωt− βz)] (4.40b)

and to deduce the transverse components from Eqs. (4.34).

We start from the Helmholtz wave equations,

∇2Ez = ∇2
tEz +

∂2

∂z2
Ez = −µεω2Ez (4.41a)

∇2Hz = ∇2
tHz +

∂2

∂z2
Hz = −µεω2Hz (4.41b)

and account for the z dependence according to Eqs. (4.39),

∇2Ez = ∇2
tEz − β2Ez = −µεω2Ez (4.42a)

∇2Hz = ∇2
tHz − β2Hz = −µεω2Hz (4.42b)

We have employed the transverse gradient defined as,

∇t = %̂
∂

∂%
+ ϕ̂

1

%

∂

∂ϕ
(4.43)

The transverse component of the Laplacian becomes

∇2
t =

1

%

∂

∂%

(
%
∂

∂%

)
+

1

%2

∂2

∂ϕ2
=

∂2

∂%2
+

1

%

∂

∂%
+

1

%2

∂2

∂ϕ2
(4.44)
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4.2.6 Wave equations in the core, Bessel functions

The region of the cylinder, 0 ≤ % ≤ a , is characterized by the material parameters, µ1

and ε1 . We make use of the solutions proposed in Eqs. (4.39) and obtain,

∇2
tEz − β2Ez = −µ1ε1ω

2Ez

∇2
tEz + κ2Ez = 0 (4.45a)

∇2
tHz − β2Hz = −µ1ε1ω

2Hz

∇2
tHz + κ2Hz = 0 (4.45b)

For µ1ε1ω
2 ≥ β2 , we define,

µ1ε1ω
2 − β2 = κ2 (4.46)

To solve the Helmholtz equations (4.38) with the proposed solution according to Eqs. (4.39),

we have to start from the component parallel to ẑ containing exclusively a single field

component, Ez (%, ϕ) , or Hz (%, ϕ)

∇2Ez + µ1ε1ω
2Ez = 0

∂2Ez
∂%2

+
1

%

∂Ez
∂%

+
1

%2

∂2Ez
∂ϕ2

+
∂2Ez
∂z2

+ µ1ε1ω
2Ez = 0

∂2Ez
∂%2

+
1

%

∂Ez
∂%

+
1

%2

∂2Ez
∂ϕ2

− β2Ez + µ1ε1ω
2Ez = 0

∂2Ez
∂%2

+
1

%

∂Ez
∂%

+
1

%2

∂2Ez
∂ϕ2

+ κ2Ez = 0 (4.47a)

∇2Hz + µ1ε1ω
2Hz = 0

∂2Hz

∂%2
+

1

%

∂Hz

∂%
+

1

%2

∂2Hz

∂ϕ2
+
∂2Hz

∂z2
+ µ1ε1ω

2Hz = 0

∂2Hz

∂%2
+

1

%

∂Hz

∂%
+

1

%2

∂2Hz

∂ϕ2
− β2Hz + µ1ε1ω

2Hz = 0

∂2Hz

∂%2
+

1

%

∂Hz

∂%
+

1

%2

∂2Hz

∂ϕ2
+ κ2Hz = 0 (4.47b)

In summary, we have the following results. The fields E% (%, ϕ) , Eϕ (%, ϕ) , H% (%, ϕ) ,
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and Hϕ (%, ϕ) are given by Eqs. (4.34) with the substitutions according to Eqs. (4.46)

E% = −j
1

κ2

(
β
∂Ez
∂%

+ ωµ1
1

%

∂Hz

∂ϕ

)
, (4.48a)

Eϕ = −j
1

κ2

(
β

1

%

∂Ez
∂ϕ
− ωµ1

∂Hz

∂%

)
, (4.48b)

H% = −j
1

κ2

(
β
∂Hz

∂%
− ωε1

1

%

∂Ez
∂ϕ

)
, (4.48c)

Hϕ = −j
1

κ2

(
β

1

%

∂Hz

∂ϕ
+ ωε1

∂Ez
∂%

)
. (4.48d)

The fields Ez (%, ϕ) andHz (%, ϕ) are the solutions of the partial differential equations (4.47)

∂2Ez
∂%2

+
1

%

∂Ez
∂%

+
1

%2

∂2Ez
∂ϕ2

+ κ2Ez = 0 (4.49a)

∂2Hz

∂%2
+

1

%

∂Hz

∂%
+

1

%2

∂2Hz

∂ϕ2
+ κ2Hz = 0 (4.49b)

or in a concise form, still in circular cylinder coordinates, using Eq. (4.44)

∇2
tEz + κ2Ez = 0 (4.50a)

∇2
tHz + κ2Hz = 0 (4.50b)

We have already removed the second derivatives with respect to t and z of the fields

in the wave equations (4.36) using the proposed solutions given in Eqs. (4.39)

∂2Ez (%, ϕ, z, t)

∂t2
= −ω2Ez (%, ϕ, z, t) (4.51a)

∂2Hz (%, ϕ, z, t)

∂t2
= −ω2Hz (%, ϕ, z, t) (4.51b)

∂2Ez (%, ϕ, z, t)

∂z2
= −β2Ez (%, ϕ, z, t) (4.51c)

∂2Hz (%, ϕ, z, t)

∂z2
= −β2Hz (%, ϕ, z, t) (4.51d)

Next we choose the dependence on ϕ according to the requirement where the trans-

form ϕ→ ϕ+ 2π should not change the ϕ dependence of the fields. For a Laplace

product as a choice for the solution of the partial differential equations, here the wave

equations (4.36), we take

Ez (%, ϕ, z, t) = Ez (%) ejνϕ exp [j (ωt− βz)] (4.52a)

Hz (%, ϕ, z, t) = Hz (%) ejνϕ exp [j (ωt− βz)] (4.52b)
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where ν must be an integer. The solutions to the transverse components take the same

form which follow from Eqs. (4.34),

E% (%, ϕ, z, t) = E% (%) ejνϕ exp [j (ωt− βz)] (4.53a)

Eϕ (%, ϕ, z, t) = Eϕ (%) ejνϕ exp [j (ωt− βz)] (4.53b)

H% (%, ϕ, z, t) = H% (%) ejνϕ exp [j (ωt− βz)] (4.53c)

Hϕ (%, ϕ, z, t) = Hϕ (%) ejνϕ exp [j (ωt− βz)] (4.53d)

We can now eliminate the derivatives with respect to ϕ using the proposed dependence in

the form of a factor exp (jνϕ) .The substitution into Eq. (4.38a) according to Eq. (4.52a),

and the account of
∂

∂ϕ
→ jν and

∂2

∂z2
→ −β2 provides,(

1

%

∂

∂%
%
∂

∂%
+

1

%2

∂2

∂ϕ2
+

∂2

∂z2
+ ω2µε

)
(%̂E% + ϕ̂Eϕ + ẑEz)

= %̂

[(
1

%

d

d%
%

d

d%

)
E% −

1

%2
(E% + 2jνEϕ) +

(
ω2µε− β2 − ν2

%2

)
E%

]
+ ϕ̂

[(
1

%

d

d%
%

d

d%

)
Eϕ −

1

%2
(Eϕ − 2jνE%) +

(
ω2µε− β2 − ν2

%2

)
Eϕ

]
+ ẑ

[(
1

%

d

d%
%

d

d%

)
Ez +

(
ω2µε− β2 − ν2

%2

)
Ez

]
= %̂

[(
1

%

d

d%
%

d

d%

)
E% −

2jν

%2
Eϕ +

(
ω2µε− β2 − ν2 + 1

%2

)
E%

]
+ ϕ̂

[(
1

%

d

d%
%

d

d%

)
Eϕ +

2jν

%2
E% +

(
ω2µε− β2 − ν2 + 1

%2

)
Eϕ

]
+ ẑ

[(
1

%

d

d%
%

d

d%

)
Ez +

(
ω2µε− β2 − ν2

%2

)
Ez

]
(4.54)

In a similar way, we can transform Eq. (4.38b) with the help of Eq. (4.52b).

Equations (4.49a) and (4.49b) are reduced to ordinary differential equations, so called

Bessel–Euler equations for Ez(%) and Hz(%) with a variable % ,

d2Ez
d%2

+
1

%

dEz
d%

+

(
κ2 − ν2

%2

)
Ez = 0 (4.55a)

d2Hz

d%2
+

1

%

dHz

d%
+

(
κ2 − ν2

%2

)
Hz = 0 (4.55b)

Alternatively, these equations are expressed with a dimensionless variable κ% as Ez(κ%)

and Hz(κ%)

(κ%)2 d2

d (κ%)2Ez + (κ%)
d

d (κ%)
Ez +

[
(κ%)2 − ν2

]
Ez = 0 (4.56a)

(κ%)2 d2

d (κ%)2Hz + (κ%)
d

d (κ%)
Hz +

[
(κ%)2 − ν2

]
Hz = 0 (4.56b)
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The Laplace product as a solutions of the wave equations (4.36) in a more specific notation

becomes,

E(ν)
z (κ%, ϕ, z, t) = E(ν)

z (κ%) ejνϕ exp
[
j
(
ωt− β(ν)z

)]
(4.57a)

H(ν)
z (κ%, ϕ, z, t) = H(ν)

z (κ%) ejνϕ exp
[
j
(
ωt− β(ν)z

)]
(4.57b)

In the mathematical analysis, the Bessel–Euler equation is written as

x2 d2y

dx2
+ x

dy

dx
+
(
x2 − ν2

)
y = 0 . (4.58)

or

d2y

dx2
+

1

x

dy

dx
+

(
1− ν2

x2

)
y = 0 . (4.59)

It can be transformed in the form

x
d

dx

(
x

dy

dx

)
+
(
x2 − ν2

)
y = 0 . (4.60)

It is a second order homogeneous ordinary differential linear equation which has two

linearly independent solutions. One of them is represented by the Bessel function (of the

order ν), i.e., Jν (κ%) (also the Bessel function of the first kind),

Jν (κ%) =
∞∑
q=0

(−1)q

q!(q + ν)!

(κ%
2

)ν+2q

(4.61)

The second solution is represented by the Neumann function (of the order ν), i.e., Nν (κ%)

(also the Bessel function of the second kind)

Nν (κ%) =
2

π
ln

(
Υκ%

2

)
Jν (κ%)

− 1

π

(κ%
2

)−ν ν−1∑
q=0

(ν − q − 1)!

q!

(κ%
2

)2q

− 1

π

(κ%
2

)ν ∞∑
q=0

(−1)q

q! (q + ν)!

(
q∑
s=1

1

s
+

q+ν∑
s=1

1

s

)(κ%
2

)2q

(4.62)

At q = 0 , the sum

q∑
s=1

1

s
is zero. Here Υ = exp υ ≈ 1, 78107 with,

υ = lim
m→∞

[
m∑
s=1

(
1

s
− ln s

)]
≈ 228

395
≈ 0, 5772157
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υ is the Euler–Mascheroni constant.5

The solutions to the Bessel equation can be alternatively expressed in terms of Hankel

functions (also the Bessel functions of the third kind). The Hankel functions in a modified

form are important in our analysis as they will be employed as solutions in the region

a ≤ % <∞ . The Hankel functions of the first and second kind (of the order ν) are denoted

as H(1)
ν (κ%) and H(2)

ν (κ%) , respectively. They are related to the previous solutions by

the relations,

H(1)
ν (κ%) = Jν (κ%) + jNν (κ%) (4.63a)

H(2)
ν (κ%) = Jν (κ%)− jNν (κ%) (4.63b)

The Bessel functions, Neumann functions, and Hankel functions belong to the family of

cylindrical functions (of the order ν). In general, the order of cylindrical functions need

not be an integer. However, for our purpose we are restricted to the case where ν is an

integer, as required by the condition expressed in Eq. (4.52). The restriction to integer ν

complicates the search for the second solution represented by the Neumann function.

The general cylindrical functions are denoted as Zν (κ%) . The Bessel functions of the

zero and first order are shown in Figure 4.5. Figures 4.6–4.8 compare the Bessel and

Neumann functions of the zero and first order. The higher order Bessel functions are

shown in Figure 4.9.

4.2.7 Wave equations in the cladding. Hankel functions

The outer region, a ≤ % < ∞ , is characterized by the material parameters µ2 and ε2 .

We are interested in the solutions pertinent to the waveguide modes in the fibers and

require the solutions for the region a ≤ % < ∞ in the form of evanescent waves of

amplitudes sufficiently quickly decaying with the distance %→∞ from the fiber axis z .

The transverse fields, E% (%, ϕ) , Eϕ (%, ϕ) , H% (%, ϕ) , and Hϕ (%, ϕ) follow from Eqs. (4.34)

after the substitution for ω2εµ− β2 = ω2ε2µ2 − β2 = −γ2 or from the Eqs. (4.49) by the

exchange κ→ jγ .

5In the convention notation, the Eulero–Mascheroni constant is denoted as γ . In the present electro-

magnetic theory of dielectric waveguides, the symbol γ is employed for the transverse damping constant.

We therefore represent the Euler–Mascheroni constant by υ and define Υ = eυ .
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Figure 4.5: Plot of the Bessel functions of the zero and first order, J0 (κ%) and J1 (κ%) .

We get

E% = j
1

γ2

(
β
∂Ez
∂%

+ ωµ2
1

%

∂Hz

∂ϕ

)
, (4.64a)

Eϕ = j
1

γ2

(
β

1

%

∂Ez
∂ϕ
− ωµ2

∂Hz

∂%

)
, (4.64b)

H% = j
1

γ2

(
β
∂Hz

∂%
− ωε2

1

%

∂Ez
∂ϕ

)
, (4.64c)

Hϕ = j
1

γ2

(
β

1

%

∂Hz

∂ϕ
+ ωε2

∂Ez
∂%

)
. (4.64d)

The fields Ez (%, ϕ) and Hz (%, ϕ) are the solutions to the partial differential equations,

∂2Ez
∂%2

+
1

%

∂Ez
∂%

+
1

%2

∂2Ez
∂ϕ2

− γ2Ez = 0 (4.65a)

∂2Hz

∂%2
+

1

%

∂Hz

∂%
+

1

%2

∂2Hz

∂ϕ2
− γ2Hz = 0 (4.65b)

or in a more concise notation,

∇2
tEz − γ2Ez = 0 (4.66a)

∇2
tHz − γ2Hz = 0 (4.66b)
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Figure 4.6: Plot of the Bessel and Neumann functions of the zero order, J0 (κ%) and N0 (κ%) .

The diffusion equations (4.65) and (4.66) follow from the wave equations (4.49) and (4.50)

by the same exchange κ→ jγ .6 The required solution for the fields Ez (%, ϕ) and Hz (%, ϕ)

sufficiently quickly decaying with %→∞ , corresponding to the evanescent waves repre-

sent the solution to the modified Bessel equation,

x2 d2y

dx2
+ x

dy

dx
−
(
x2 + ν2

)
y = 0 . (4.67)

which can be deduced from Eq. (4.58) by the exchange x → jx . For our purpose, we

write them in a way similar to that already employed in Eqs. (4.55)

d2Ez
d%2

+
1

%

dEz
d%
−
(
γ2 +

ν2

%2

)
Ez = 0 (4.68a)

d2Hz

d%2
+

1

%

dHz

d%
−
(
γ2 +

ν2

%2

)
Hz = 0 (4.68b)

or to the Bessel equation with a dimensionless variable, in a close analogy with the rep-

6The replacement of the real parameter κ by an imaginary pure one, jγ transforms the Helmholtz

wave equation into a diffuse equation. The solutions to the Helmholtz equations are the Bessel functions,

the solutions to the diffuse equations are the modified (or hyperbolic) Bessel functions.
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Figure 4.7: The Bessel function of the first order, J1 (κ%) and the Neumann function of the

zero order, N0 (κ%) .

resentation in Eqs. (4.56)

(jγ%)2 d2Ez

d (jγ%)2 + (jγ%)
dEz

d (jγ%)
+
[
(jγ%)2 − ν2

]
Ez = 0 (4.69a)

(jγ%)2 d2Hz

d (jγ%)2 + (jγ%)
dHz

d (jγ%)
+
[
(jγ%)2 − ν2

]
Hz = 0 (4.69b)

After the removal of the imaginary unit j ,

(γ%)2 d2Ez

d (γ%)2 + (γ%)
dEz

d (γ%)
−
[
(γ%)2 + ν2

]
Ez = 0 , (4.70a)

(γ%)2 d2Hz

d (γ%)2 + (γ%)
dHz

d (γ%)
−
[
(γ%)2 + ν2

]
Hz = 0 . (4.70b)

We have started from the equations corresponding to Eqs. (4.45)

∇2
tEz − β2Ez = −µεω2Ez

∇2
tEz − γ2Ez = 0 (4.71a)



4.2. FIELD EQUATIONS IN CIRCULAR CYLINDER COORDINATES 97

J1 (κ%)

N1 (κ%)

O 5 10 15

κ%

1

0, 5

−0, 5

−1

�
Figure 4.8: Plot of the Bessel function and Neumann function of the first order, J1 (κ%) and

N1 (κ%) .

∇2
tHz − β2Hz = −µεω2Hz

∇2
tHz − γ2Hz = 0 (4.71b)

For the evanescent solution, µ2ε2ω
2 ≤ β2 ,

β2 − µ2ε2ω
2 = γ2 (4.72)

The solutions to the modified Bessel equations (4.68) and (4.69) are represented by

cylindrical functions of an imaginary variable, Zν (jγ%) . Between the two solutions rep-

resented by modified Hankel functions, H(1)
ν (jγ%) and H(2)

ν (jγ%) we choose the solution

consistent with the boundary condition for the guided waves. i.e., that sufficiently quickly

decaying with the distance, % from the fiber axis.
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Figure 4.9: Bessel functions J0 (κ%) , J1 (κ%) , J2 (κ%) , J3 (κ%) , J4 (κ%) , and J5 (κ%) .

4.2.8 Acceptable solutions

We first solve the Helmholtz wave equation in a homogeneous unbound medium char-

acterized by the material parameters ε1 and µ1 using Eqs. (4.47) pertinent to the fiber

core region, 0 ≤ % ≤ a . In the next step we solve the diffuse equation in a homogeneous

unbound medium characterized by the material parameters ε2 and µ2 using Eqs. (4.72)

pertinent to the fiber cladding region, % ≥ a . We assume that the solutions are also valid

in the corresponding regions, 0 ≤ % ≤ a and % ≥ a with the common boundary surface,

% = a . At the boundary surface, % = a , we require the continuity of the field E and H

components parallel to the boundary surface, % = a . In addition, we require the fields E

and H of the guided modes to be non zero and finite in the region 0 ≤ % ≤ a, and to be

finite and decaying sufficiently quickly in the region % ≥ a at %→∞ .

In the region 0 ≤ % ≤ a we choose Bessel functions, Jν (κ%) , as solutions to Eqs. (4.49)

Besselovy funkce Jν (κ%) . Neumann functions, Nν (κ%) as well as Hankel functions

H(1)
ν (κ%) and H(2)

ν (κ%) display singularities on the fiber axis, % = 0 and must be there-

fore rejected. At % = 0 all Bessel functions are finite. The Bessel function of zero order,

ν = 0 , assumes the value, J0 (0) = 1 while those of non zero order, ν > 0 display a nodal

point at % = 0 , i.e., Jν (0) = 0 .
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Figure 4.10: Plot of Neumann functions, N0 (κ%) , N1 (κ%) , N2 (κ%) , N3 (κ%) , and N4 (κ%) .

In the region, % ≥ a , we choose modified Hankel functions of the first kind,H(1)
ν (jγ%) ∝

exp (−γ%) , decaying with %→∞ and reject modified Hankel functions of the second kind,

H(2)
ν (jγ%) ∝ exp (γ%) increasing to infinity for %→∞ .

Alternatively, the solutions for the region, % ≥ a , consistent with the boundary condi-

tions at infinity can be expressed in terms real functions of real variable (γ%) , represented

by modified Bessel functions, Kν(γ%) 7

Kν(γ%) =
π

2
jν+1H(1)

ν (jγ%) =
π

2
jν+1 [Jν(jγ%) + jNν(jγ%)] (4.73)

7Mary L. Boas, Mathematical Methods in Physical Sciences, 3rd Edition, J. Wiley & Sons 2006, p. 595.
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Figure 4.11: Modified Hankel functions of the first kind, H(1)

ν (j γ%) of the order ν =

0, 1, 2, 3, 4 . The displayed curves represent the functions H(1)
ν (j γ%) multiplied by a phase fac-

tor exp [j (ν + 1)π/2] , The factor transforms the functions H(1)
0 (j γ%) , H(1)

1 (j γ%) , H(1)
2 (j γ%) ,

H(1)
3 (j γ%) and H(1)

4 (j γ%) to the functions of real positive values.

4.2.9 Fields in the core

In the core region, 0 ≤ % ≤ a , we have,

κ2 = n2
1

ω2

c2
− β2 , (4.74)

where n2
1 = ε1µ1c

2 , The symbol c =
(
ε(vac)µ(vac)

)−1/2
conventionally denotes the speed of

electromagnetic waves in a vacuum; ε(vac) and µ(vac) stand for the electric permittivity in

a vacuum and magnetic permeability in a vacuum, respectively.

We write for the electric and magnetic fields,

E(ν)
z (%, ϕ) = AνJν (κ%) ejνϕ (4.75a)

H(ν)
z (%, ϕ) = BνJν (κ%) ejνϕ (4.75b)

The factor exp [j (ωt− βz)] was dropped out. We find for the first and second derivatives
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of fields E
(ν)
z and H

(ν)
z ,

∂E
(ν)
z (%, ϕ)

∂%
= κAν

dJν (κ%)

d (κ%)
ejνϕ (4.76a)

∂2E
(ν)
z (%, ϕ)

∂%2
= κ2Aν

d2Jν (κ%)

d (κ%)2 ejνϕ (4.76b)

∂E
(ν)
z (%, ϕ)

∂ϕ
= jνAνJν (κ%) ejνϕ (4.76c)

∂2E
(ν)
z (%, ϕ)

∂ϕ2
= −ν2AνJν (κ%) ejνϕ (4.76d)

∂H
(ν)
z (%, ϕ)

∂%
= κBν

dJν (κ%)

d (κ%)
ejνϕ (4.76e)

∂2H
(ν)
z (%, ϕ)

∂%2
= κ2Bν

d2Jν (κ%)

d (κ%)2 ejνϕ (4.76f)

∂H
(ν)
z (%, ϕ)

∂ϕ
= jνBνJν (κ%) ejνϕ (4.76g)

∂2H
(ν)
z (%, ϕ)

∂ϕ2
= −ν2BνJν (κ%) ejνϕ (4.76h)

The field components, E
(ν)
z and H

(ν)
z , are parallel to the fiber cylinder axis and tangential

with respect to the cylindrical surface boundary % = a . The electric field components

perpendicular (transverse) with respect to the cylinder axis are given by,

E(ν)
% = − j

κ2

(
β
∂E

(ν)
z

∂%
+ ωµ1

1

%

∂H
(ν)
z

∂ϕ

)

= − j

κ2

[
βκAν

dJν (κ%)

d (κ%)
+

jνωµ1

%
BνJν (κ%)

]
ejνϕ (4.77a)

E(ν)
ϕ = − j

κ2

(
β

1

%

∂E
(ν)
z

∂ϕ
− ωµ1

∂H
(ν)
z

∂%

)

= − j

κ2

[
jνβ

%
AνJν (κ%)− ωµ1κBν

dJν (κ%)

d (κ%)

]
ejνϕ (4.77b)

The electric field component, E
(ν)
ϕ is tangential with respect to the boundary surface

% = a .

We consider the duality tansform

E → ±H , i.e., Aν → ±Bν

H → ∓E , i.e., Bν → ∓Aν
µ1 ↔ ε1
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and find,

H(ν)
% = − j

κ2

(
β
∂H

(ν)
z

∂%
− ωε1

1

%

∂E
(ν)
z

∂ϕ

)

= − j

κ2

[
βκBν

dJν (κ%)

d (κ%)
− jνωε1

1

%
AνJν (κ%)

]
ejνϕ (4.78a)

H(ν)
ϕ = − j

κ2

(
β

1

%

∂H
(ν)
z

∂ϕ
+ ωε1

∂E
(ν)
z

∂%

)

= − j

κ2

[
jνβ

%
BνJν (κ%) + ωε1κAν

dJν (κ%)

d (κ%)

]
ejνϕ (4.78b)

The magnetic field component, H
(ν)
ϕ is tangential with respect to the boundary surface,

% = a .

4.2.10 Fields in the cladding

In the cladding region, a ≤ % <∞ , we have

γ2 = β2 − n2
2

ω2

c2
, (4.79)

where n2
2 = ε2µ2c

2 . The electromagnetic wave velocity in a vacuum is denoted by c =(
ε(vac)µ(vac)

)−1/2
. We express the fields without the factor exp [j (ωt− βz)]

E(ν)
z (%, ϕ) = CνH(1)

ν (jγ%) ejνϕ (4.80a)

H(ν)
z (%, ϕ) = DνH(1)

ν (jγ%) ejνϕ (4.80b)

The first and second derivatives of the fields E
(ν)
z and H

(ν)
z are given by,

∂E
(ν)
z (%, ϕ)

∂%
= jγCν

dH(1)
ν (jγ%)

d (jγ%)
ejνϕ (4.81a)

∂2E
(ν)
z (%, ϕ)

∂%2
= −γ2Cν

d2H(1)
ν (jγ%)

d (jγ%)2 ejνϕ (4.81b)

∂E
(ν)
z (%, ϕ)

∂ϕ
= jνCνH(1)

ν (jγ%) ejνϕ (4.81c)

∂2E
(ν)
z (%, ϕ)

∂ϕ2
= −ν2CνH(1)

ν (jγ%) ejνϕ (4.81d)
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∂H
(ν)
z (%, ϕ)

∂%
= jγDν

dH(1)
ν (jγ%)

d (jγ%)
ejνϕ (4.81e)

∂2H
(ν)
z (%, ϕ)

∂%2
= −γ2Dν

d2H(1)
ν (jγ%)

d (jγ%)2 ejνϕ (4.81f)

∂H
(ν)
z (%, ϕ)

∂ϕ
= jνDνH(1)

ν (jγ%) ejνϕ (4.81g)

∂2H
(ν)
z (%, ϕ)

∂ϕ2
= −ν2DνH(1)

ν (jγ%) ejνϕ (4.81h)

The field components, E
(ν)
z and H

(ν)
z , are parallel to the fiber cylinder axis and tangential

with respect to the cylindrical surface boundary % = a . The electric field components

perpendicular (transverse) with respect to the cylinder axis are given by,

E(ν)
% =

j

γ2

(
β
∂E

(ν)
z

∂%
+ ωµ2

1

%

∂H
(ν)
z

∂ϕ

)

=
j

γ2

[
jγβCν

dH(1)
ν (jγ%)

d (jγ%)
+ jνωµ2

1

%
DνJν (jγ%)

]
ejνϕ (4.82a)

E(ν)
ϕ =

j

γ2

(
β

1

%

∂E
(ν)
z

∂ϕ
− ωµ2

∂H
(ν)
z

∂%

)

=
j

γ2

[
jνβ

1

%
CνH(1)

ν (jγ%)− jγωµ2Dν
dH(1)

ν (jγ%)

d (jγ%)

]
ejνϕ (4.82b)

The electric field component, E
(ν)
ϕ is tangential with respect to the boundary surface

% = a .

The duality transform provides,

E → ±H , i.e., Cν → ±Dν

H → ∓E , i.e., Dν → ∓Cν
µ1 ↔ ε1

H(ν)
% =

j

γ2

(
β
∂H

(ν)
z

∂%
− ωε2

1

%

∂E
(ν)
z

∂ϕ

)

=
j

γ2

[
jγβDν

dH(1)
ν (jγ%)

d (jγ%)
− jνωε2

1

%
CνH(1)

ν (jγ%)

]
ejνϕ (4.83a)

H(ν)
ϕ =

j

γ2

(
β

1

%

∂H
(ν)
z

∂ϕ
+ ωε2

∂E
(ν)
z

∂%

)

=
j

γ2

[
jνβ

1

%
DνH(1)

ν (jγ%) + jγωε2Cν
dH(1)

ν (jγ%)

d (jγ%)

]
ejνϕ (4.83b)
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The magnetic field component, H
(ν)
ϕ is tangential with respect to the boundary surface

% = a .

4.3 Characteristic equation

The relations among the amplitudes, Aν , Bν , Cν and Dν follow from the continuity

condition for tangential field components, E
(ν)
ϕ , H

(ν)
z , H

(ν)
ϕ , and E

(ν)
z at the boundary

surface, % = a , expressed in Eqs. (3.32),

lim
%→a−

E(ν)
z (%) = lim

%→a+
E(ν)
z (%) (4.84a)

lim
%→a−

H(ν)
z (%) = lim

%→a+
H(ν)
z (%) (4.84b)

lim
%→a−

E(ν)
ϕ (%) = lim

%→a+
E(ν)
ϕ (%) (4.84c)

lim
%→a−

H(ν)
ϕ (%) = lim

%→a+
H(ν)
ϕ (%) (4.84d)

where the limits lim
%→a−

denote limits for % approaching the boundary, % = a from the core

region % < a , and the limits lim
%→a+

denote limits for % approaching the boundary, % = a ,

from the cladding region, % > a .

We introduce a concise notation for the derivatives at the surface % = a[
dJν (κ%)

d (κ%)

]
%=a

=
dJν (κa)

d (κa)
(4.85a)

[
dH(1)

ν (jγ%)

d (jγ%)

]
%=a

=
dH(1)

ν (jγa)

d (jγa)
(4.85b)

We arrive at four relations,

E
(ν)
ϕ continuous

− j

κ2

[
jνβ

a
AνJν (κa)− ωµ1κBν

dJν (κa)

d (κa)

]
=

j

γ2

[
jνβ

1

a
CνH(1)

ν (jγa)− jγωµ2Dν
dH(1)

ν (jγa)

d (jγa)

]
(4.86a)

H
(ν)
z continuous

BνJν (κa) = DνH(1)
ν (jγa) (4.86b)

H
(ν)
ϕ continuous

− j

κ2

[
jνβ

1

a
BνJν (κa) + ωε1κAν

dJν (κa)

d (κa)

]
=

j

γ2

[
jνβ

1

a
DνH(1)

ν (jγa) + jγωε2Cν
dH(1)

ν (jγa)

d (jγa)

]
(4.86c)
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E
(ν)
z continuous

AνJν (κa) = CνH(1)
ν (jγa) (4.86d)

The relations are coupled by the duality transform, Aν → ±Bν , Bν → ∓Aν and µ1 ↔ ε1

in the core region, % ≤ a , and by the duality transform, Cν → ±Dν , Dν → ∓Cν and

µ2 ↔ ε2 in the cladding region, % ≥ a .

The boundary conditions provide a homogeneous set of four equations for unknown

amplitudes, Aν , Bν , Cν and Dν . We further simplify the notation for the cylindrical

functions Zν and their derivatives on the boundary surface % = a in Eqs. (4.85),

Jν = Jν (κa) (4.87a)

H(1)
ν = H(1)

ν (jγa) (4.87b)

J ′ν =
dJν (κa)

d (κa)
(4.87c)

H(1)′

ν =
dH(1)

ν (jγa)

d (jγa)
(4.87d)

A nontrivial solution to Eqs. (4.87) follows from the condition for the zero determinant

of this set. The arrangement of the determinant is shown in Table 4.1. In our concise

notation, a condition for the zero determinant takes the form,∣∣∣∣∣∣∣∣∣∣∣∣∣∣

νβ

κ2a
Jν

jωµ1

κ
J ′ν

νβ

γ2a
H(1)
ν −ωµ2

γ
H(1)′

ν

0 Jν 0 −H(1)
ν

− jωε1

κ
J ′ν

νβ

κ2a
Jν

ωε2

γ
H(1)′

ν

νβ

γ2a
H(1)
ν

Jν 0 −H(1)
ν 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.88)

It represents the eigenvalue equation for guided modes. The determinant on the left hand
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side of Eq. (4.88) is of the type,∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14

0 a22 0 a24

a31 a11 a33 a13

a22 0 a24 0

∣∣∣∣∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣∣∣∣
a22 0 a24

a11 a33 a13

0 a24 0

∣∣∣∣∣∣∣∣∣−a12

∣∣∣∣∣∣∣∣∣
0 0 a24

a31 a33 a13

a22 a24 0

∣∣∣∣∣∣∣∣∣+a13

∣∣∣∣∣∣∣∣∣
0 a22 a24

a31 a11 a13

a22 0 0

∣∣∣∣∣∣∣∣∣−a14

∣∣∣∣∣∣∣∣∣
0 a22 0

a31 a11 a33

a22 0 a24

∣∣∣∣∣∣∣∣∣
= a11

(
a11a

2
24 − a13a22a24

)
− a12

(
a2

24a31 − a22a24a33

)
+ a13

(
a13a

2
22 − a11a22a24

)
− a14

(
a2

22a33 − a22a24a31

)
= a11a24 (a11a24 − a13a22)− a12a24 (a24a31 − a22a33)

+ a13a22 (a13a22 − a11a24)− a14a22 (a22a33 − a24a31)

= (a11a24 − a13a22) (a11a24 − a13a22)− (a12a24 − a14a22) (a24a31 − a22a33)

= (a11a24 − a13a22)2 − (a12a24 − a14a22) (a24a31 − a22a33)

The structure of the eigenvalue equation simplifies to the form,

(a11a24 − a13a22)2 − (a12a24 − a14a22) (a24a31 − a22a33) = 0 (4.89)

The substitution for the determinant elements according to Eq. (4.88) provides[
νβ

κ2a
Jν
(
−H(1)

ν

)
− νβ

γ2a
H(1)
ν Jν

]2

−
[

jωµ1

κ
J ′ν
(
−H(1)

ν

)
−
(
−ωµ2

γ
H(1)′

ν

)
Jν
] [(
−H(1)

ν

)(
− jωε1

κ
J ′ν
)
− Jν

ωε2

γ
H(1)′

ν

]
= 0

(4.90)

The eigenvalues equation rearranged becomes,[
νβ

ω

(
1

κ2a2
+

1

γ2a2

)
JνH(1)

ν

]2

−
[
µ1

κa
J ′νH(1)

ν −
µ2

jγa
JνH(1)′

ν

] [
jε1

κa
J ′νH(1)

ν −
ε2

jγa
JνH(1)′

ν

]
= 0

(4.91)

A further rearrangement using κ2 + γ2 = (ε1µ1 − ε2µ2)ω2[
νβ

a

ω

κ2γ2
(ε1µ1 − ε2µ2)

]2

=

[
µ1

κ

J ′ν (κa)

Jν (κa)
+ j

µ2

γ

H(1)′
ν (jγa)

H(1)
ν (jγa)

][
ε1

κ

J ′ν (κa)

Jν (κa)
+ j

ε2

γ

H(1)′
ν (jγa)

H(1)
ν (jγa)

]
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Table 4.1: Arrangement of the determinant employed in the computation of the eigenvalue

equation

Aν Bν Cν Dν

Eϕ
νβ

κ2a
J jωµ1

κ
J ′ νβ

γ2a
H −ωµ2

γ
H′

Hz 0 J 0 −H

Hϕ − jωε1

κ
J ′ νβ

κ2a
J ωε2

γ
H′ νβ

γ2a
H

Ez J 0 −H 0

Equation (4.91) can be transformed to the form with dimensionless arguments, βa , κa

and jγa

[
νωa βa

κ2a2 γ2a2
(ε1µ1−ε2µ2)

]2

=

[
µ1

κa

J ′ν (κa)

Jν (κa)
− µ2

jγa

H(1)′
ν (jγa)

H(1)
ν (jγa)

][
ε1

κa

J ′ν (κa)

Jν (κa)
− ε2

jγa

H(1)′
ν (jγa)

H(1)
ν (jγa)

]
(4.92)

We can also employ
1

jγa

H(1)′
ν (jγa)

Hν (jγa)
= − 1

γa

K′ν (γa)

Kν (γa)
, and write,

[
νωa βa

κ2a2 γ2a2
(ε1µ1−ε2µ2)

]2

=

[
µ1

κa

J ′ν (κa)

Jν (κa)
+µ2

1

γa

K′ν (γa)

Kν (γa)

][
ε1

κa

J ′ν (κa)

Jν (κa)
+ε2

1

γa

K′ν (γa)

Kν (γa)

]
.

(4.93)

The expressions in square brackets on the right hand side are related by the duality

transform µi ↔ εi , i = 1, 2 while the eigenvalue equation itself is invariant with respect

to the duality transform.

To find another alternative form, we multiply both sides of Eq. (4.92) by γ4a2

[
νβω

κ2
(ε1µ1 − ε2µ2)

]2

=

[
µ1γ

2a

κ

J ′ν(κa)

Jν(κa)
+jµ2γa

H(1)′
ν (jγa)

H(1)
ν (jγa)

][
ε1γ

2a

κ

J ′ν(κa)

Jν(κa)
+jε2γa

H(1)′
ν (jγa)

H(1)
ν (jγa)

]

In the first step, we rearrange the result to get,[
νβω

κ2
ε2µ2

(
ε1µ1

ε2µ2

− 1

)]2

=

[
µ1γ

2a

κ

J ′ν(κa)

Jν(κa)
+jµ2γa

H(1)′
ν (jγa)

H(1)
ν (jγa)

][
ε1γ

2a

κ

J ′ν(κa)

Jν(κa)
+jε2γa

H(1)′
ν (jγa)

H(1)
ν (jγa)

]
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Then in the second step, we have

ε2µ2

[
νβω (ε2µ2)1/2

κ2

(
ε1µ1

ε2µ2

− 1

)]2

=

[
µ1γ

2a

κ

J ′ν(κa)

Jν(κa)
+jµ2γa

H(1)′
ν (jγa)

H(1)
ν (jγa)

][
ε1γ

2a

κ

J ′ν(κa)

Jν(κa)
+jε2γa

H(1)′
ν (jγa)

H(1)
ν (jγa)

]

We introduce the propagation constant in the cladding medium (2), k2 = ω (ε2µ2)1/2 .

Then [
ν
βk2

κ2

(
ε1µ1

ε2µ2

− 1

)]2

=

[
µ1γ

2a

µ2κ

J ′ν(κa)

Jν(κa)
+jγa

H(1)′
ν (jγa)

H(1)
ν (jγa)

][
ε1γ

2a

ε2κ

J ′ν(κa)

Jν(κa)
+jγa

H(1)′
ν (jγa)

H(1)
ν (jγa)

]

Often, it is useful employ the indices of refraction on the left hand side of Eq. (4.92). We

make use of εiµi = n2
i c
−2 , i = 1, 2[

νβaωa

κ2a2γ2a2c2

(
n2

1 − n2
2

)]2

=

[
µ1

1

κa

J ′ν (κa)

Jν (κa)
− µ2

1

jγa

H(1)′
ν (jγa)

H(1)
ν (jγa)

][
ε1

1

κa

J ′ν (κa)

Jν (κa)
− ε2

1

jγa

H(1)′
ν (jγa)

H(1)
ν (jγa)

]
(4.94)

In the original treatment, the eigenvalue equation has been displayed with a simplified

assumption, µ1 = µ2 .8 Here we reproduce the original treatment keeping µ1 6= µ2 to

emphasize the duality relation between the expressions on the right hand side,[
νβω

κ2c2

(
n2

1 − n2
2

)]2

=

[
µ1γ

2a2

κa

J ′ν(κa)

Jν(κa)
+jµ2γa

H(1)′
ν (jγa)

H(1)
ν (jγa)

][
ε1γ

2a2

κa

J ′ν(κa)

Jν(κa)
+jε2γa

H(1)′
ν (jγa)

H(1)
ν (jγa)

]
(4.95)

The required solution to the eigenvalue equation presents a set of eigenvalues expressed

in terms of κ , γ , or β associated to the given real indices of refraction in the core, n1

and in the cladding, n2 along with the core radius, a and frequency, ω , for the orders

ν = 0, 1, 2, . . . . The number of eigenvalues, κ , or γ , or β gives the number of modes

which are allowed to propagate in the fiber. The eigenvalues, κ , γ , and β are interrelated

8Dietrich Marcuse, Light Transmission Optics, Bell Laboratories Series, Van Nostrand Reinhold Com-

pany, New York 1972, pp. 286 - 305.



4.3. CHARACTERISTIC EQUATION 109

according to Eqs. (4.74) and (4.79)

κ2 = n2
1

ω2

c2
− β2

γ2 = β2 − n2
2

ω2

c2

O 5 10
κa

1.0

0.5d
Figure 4.12: Plot of the function

J ′1 (κa)

J1 (κa)
.

Figures 4.12, 4.14 and 4.16 display the plots of functions
J ′i (κa)

Ji (κa)
, i = 1, 2, 3 employed

in the eigenvalue equation Eq. (4.95). Figures 4.13, 4.15 and 4.17 illustrates the behavior

of the functions
1

κa

J ′i (κa)

Ji (κa)
, i = 1, 2, 3 . The nodal points of Bessel functions and their

derivatives are listed in Table 4.2.
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O 5 10
κa

1.0

0.5g
Figure 4.13: Plot of the function

1

κa

J ′1 (κa)

J1 (κa)
.

4.4 Guided TE and TM modes

In general, the eigenmodes consist of all six components. The eigen modes where Ez 6= 0

and Hz 6= 0 simultaneously are called hybrid modes. They are characterized by ν 6= 0 .

On the other hand, at ν = 0 the dependence on the ϕ coordinate disappears and the

left hand side of the eigenvalue equation Ez 6= 0 a Hz 6= 0 vanish. Then, the eigenvalue

equation splits into two independent parts,[
µ1

κa

J ′0 (κa)

J0 (κa)
+ j

µ2

γa

H(1)′

0 (jγa)

H(1)
0 (jγa)

]
= 0 (4.96a)[

ε1

κa

J ′0 (κa)

J0 (κa)
+ j

ε2

γa

H(1)′

0 (jγa)

H(1)
0 (jγa)

]
= 0 (4.96b)
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J ′2
J2

O 5 10
γa

1.0

0.5e
Figure 4.14: Plot of the function

J ′2 (κa)

J2 (κa)
.

Because of the ϕ independence, all the derivatives with respect to ϕ in Eqs. (4.34) vanish,

i.e.,
∂

∂ϕ
→ 0 . Equations (4.34) simplify to

E% = −j
1

κ2
β
∂Ez
∂%

(4.97a)

Eϕ = j
1

κ2
ωµ

∂Hz

∂%
(4.97b)

H% = −j
1

κ2
β
∂Hz

∂%
(4.97c)

Hϕ = −j
1

κ2
ωε
∂Ez
∂%

(4.97d)

We arrive at two independent field sets. In the first one, the Ez component is missing.



112 CHAPTER 4. OPTICAL FIBERS

O 5 10
κa

1.0

0.5h
Figure 4.15: Plot of the function

1

κa

J ′2 (κa)

J2 (κa)
.

The set represents TE modes consisting of the Eϕ , H% and Hz components. It is the Hz

field component which is missing in the second set. This represent TM modes consisting

of the Hϕ , E% and Ez components. Equations (4.97) confirm the splitting into the

two sets, each consisting of three field components independent of the ϕ coordinate.

Equation (4.96a) represents the eigenvalue equation for TE modes, while Eq. (4.96b)

represents that one for TM modes.

4.4.1 Characteristic equations for TE and TM modes

The eigenvalue equations for TE and TM modes can be derived using a easier procedure.

We employ a simplified notation for cylindrical functions of zero order, Z0 = J0 ,H(1)
0 , for

the values of their derivatives on the surface % = a similar to that employed in Eqs. (4.87),



4.4. GUIDED TE AND TM MODES 113

O
5 10 κa

1.0

0.5f
Figure 4.16: Plot of the function

J ′3 (κa)

J3 (κa)
.

J0 = J0 (κa) (4.98a)

H(1)
0 = H(1)

0 (jγa) (4.98b)

J ′0 =
dJ0 (κa)

d (κa)
(4.98c)

H(1)′

0 =
dH(1)

0 (jγa)

d (jγa)
(4.98d)
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O 5 10
κa

1.0

0.5i
Figure 4.17: Plot of the function

1

κa

J ′3 (κa)

J3 (κa)
.

Core region

In the core region, 0 ≤ % ≤ a we express the field components as,

E(0)
z = A0J0 (κ%) ej(ωt−βz) (4.99a)

H(0)
z = B0J0 (κ%) ej(ωt−βz) (4.99b)

E(0)
% = − j

κ2
β
∂E

(0)
z

∂%
A0

j

κ
β

dJ0 (κ%)

d (κ%)
ej(ωt−βz) (4.99c)

E(0)
ϕ =

j

κ2
ωµ1

∂H
(0)
z

∂%
= B0

j

κ
ωµ1

dJ0 (κ%)

d (κ%)
ej(ωt−βz) (4.99d)

H(0)
% = − j

κ2
β
∂H

(0)
z

∂%
= −B0

j

κ
β

dJ0 (κ%)

d (κ%)
ej(ωt−βz) (4.99e)
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Table 4.2: Nodal points of Bessel functions, Jν(x) and their derivatives, J ′ν(x). (André Angot,

Compléments de mathématiques, Paris 1957.)

J0(x) J1(x) J2(x) J3(x) J4(x) J5(x)

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715

2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386

3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002

4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801

5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178

J ′0(x) J ′1(x) J ′2(x) J ′3(x) J ′4(x) J ′5(x)

1 0.0000 1.8412 3.0542 4.2012 5.3175 6.4156

2 3.8317 5.3314 6.7061 8.0152 9.2824 10.5199

3 7.0156 8.5363 9.9695 11.3459 12.6819 13.9872

4 10.1735 11.7060 13.1704 14.5859 15.9641 17.3128

5 13.3237 14.8636 16.3475 17.7888 19.1960 20.5755

H(0)
ϕ = − j

κ2
ωε1

∂E
(0)
z

∂%
= − j

κ
ωε1A0

dJ0 (κ%)

d (κ%)
ej(ωt−βz) (4.99f)
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O

ν = 1

2
3
4

5 γa

−5

−10

j
Figure 4.18: Plot of the functions

K′ν (γa)

Kν (γa)
= j
H(1)′
ν (γa)

H(1)
ν (γa)

, ν = 1, 2, 3, 4 .

Cladding region

In the cladding region, a ≤ % , we express the field components as

E(0)
z = C0H(1)

0 (jγ%) ej(ωt−βz) (4.100a)

H(0)
z = D0H(1)

0 (jγ%) ej(ωt−βz) (4.100b)

E(0)
% =

j

γ2

(
β
∂E

(0)
z

∂%

)
= −C0

β

γ

dH(1)
0 (jγ%)

d (jγ%)
ej(ωt−βz) (4.100c)

E(0)
ϕ = − j

γ2
ωµ2

∂H
(0)
z

∂%
= D0

ωµ2

γ

dH(1)
0 (jγ%)

d (jγ%)
ej(ωt−βz) (4.100d)
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O

ν = 1
ν = 4

5 γa

5

10k
Figure 4.19: Plot of the functions

1

jγa

H(1)′
ν (jγa)

Hν (jγa)
= − 1

γa

K′ν (γa)

Kν (γa)
, ν = 1, 2, 3, 4 .

H(0)
% =

j

γ2
β
∂H

(0)
z

∂%

dH(1)
0 (jγ%)

d (jγ%)
ej(ωt−βz) (4.100e)

H(0)
ϕ =

j

γ2
ωε2

∂E
(0)
z

∂%
= −C0

ωε2

γ

dH(1)
0 (jγ%)

d (jγ%)
ej(ωt−βz) (4.100f)

As already found, the components form the two sets,

TE (E
(0)
z = 0): E

(0)
ϕ , H

(0)
z , H

(0)
%

TM (H
(0)
z = 0): H

(0)
ϕ , E

(0)
z , E

(0)
%

% = a according to Eqs. (4.84) for ν = 0 ,

lim
%→a−

E(0)
z (%) = lim

%→a+
E(0)
z (%) (4.101a)

lim
%→a−

H(0)
z (%) = lim

%→a+
H(0)
z (%) (4.101b)

lim
%→a−

E(0)
ϕ (%) = lim

%→a+
E(0)
ϕ (%) (4.101c)

lim
%→a−

H(0)
ϕ (%) = lim

%→a+
H(0)
ϕ (%) (4.101d)
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The continuity conditions can be established with the help of Eqs. (4.99) and (4.100) for

the fields,

Eϕ continuous

B0
j

κ
µ1

dJ0 (κ%)

d (κ%)

∣∣∣∣
%→a−

= D0
µ2

γ

dH(1)
0 (jγ%)

d (jγ%)

∣∣∣∣∣
%→a+

(4.102a)

Hz continuous

B0J0 (κ%)|%→a− = D0H(1)
0 (jγ%)

∣∣∣
%→a+

(4.102b)

Hϕ continuous

− j

κ
ωε1A0

dJ0 (κ%)

d (κ%)

∣∣∣∣
%→a−

= −C0
ωε2

γ

dH(1)
0 (jγ%)

d (jγ%)
ej(ωt−βz)

∣∣∣∣∣
%→a+

(4.102c)

Ez continuous

A0J0 (κ%)|%→a− = C0H(1)
0 (jγ%)

∣∣∣
%→a+

(4.102d)

We rewrite this homogeneous equation set with the help of a more concise notation.

Eϕ continuous

B0
j

κ
µ1J ′0 (κa)−D0

µ2

γ
H(1)′

0 (jγa) = 0 (4.103a)

Hz continuous

B0J0 (κa)−D0H(1)
0 (jγa) = 0 (4.103b)

Hϕ continuous

− j

κ
ωε1A0J ′0 (κa) + C0

ωε2

γ
H(1)′

0 (jγa) = 0 (4.103c)

Ez continuous

A0J0 (κa)− C0H(1)
0 (jγa) = 0 (4.103d)

This homogeneous equation set of four linear equations for the amplitudes A0 , B0 , C0

and D0 , has a nontrivial solution at the vanishing determinant constructed from the

elements of a block diagonal matrix representing the left hand side of the equation set.

The determinant has the structure displayed in Table 4.3,



4.4. GUIDED TE AND TM MODES 119

Table 4.3: Tangential field components of TE and TM modes at the boundary surface % = a.

A0 C0 B0 D0

Eϕ 0 0
jωµ1

κ
J ′0 −ωµ2

γ
H(1)′

0

Hz 0 0 J0 −H(1)
0

Hϕ − jωε1

κ
J ′0 −ωε2

γ
H(1)′

0 0 0

Ez J0 −H(1)
0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
jωµ1

κ
J ′0 −

ωµ2

γ
H(1)′

0

0 0 J0 −H(1)
0

− jωε1

κ
J ′0 −

ωε2

γ
H(1)′

0 0 0

J0 −H(1)
0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

The eigenvalue equation for TE modes

µ1

κ

J ′0 (κa)

J0 (κa)
+

jµ2

γ

H(1)′

0 (jγa)

H(1)
0 (jγa)

= 0 (4.104a)

corresponds to Eq. (4.96a). The eigenvalue equation for TM modes,

ε1

κ

J ′0 (κa)

J0 (κa)
+

jε2

γ

H(1)′

0 (jγa)

H(1)
0 (jγa)

= 0 (4.104b)

corresponds to Eq. (4.96b). The eigenvalue equation for TE modes can be rearranged to

the form,

µ1

µ2

γ2a2

κa

J ′0 (κa)

J0 (κa)
+ jγa

H(1)′

0 (jγa)

H(1)
0 (jγa)

= 0 (4.105a)

and the eigenvalue equation for TM modes can be rearranged to the form,

ε1

ε2

γ2a2

κa

J ′0 (κa)

J0 (κa)
+ jγa

H(1)′

0 (jγa)

H(1)
0 (jγa)

= 0 (4.105b)

Next, we employ the recursion relations for cylindrical function including the cases ν = 0

and ν = ±1 ,

Z−1 (z) = −Z1 (z) (4.106a)
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Z ′0 (z) =
dZ0 (z)

dz
=

1

2
[Z−1 (z)−Z1 (z)]

=
1

2
[−Z1 (z)−Z1 (z)]

= −Z1 (4.106b)

This allows us to eliminate from the eigenvalue equations (4.105) the derivatives of cylin-

drical functions with respect to the argument,

µ1

µ2

γa

κa

J1 (κa)

J0 (κa)
+ j
H(1)

1 (jγa)

H(1)
0 (jγa)

= 0 , (TE) (4.107a)

ε1

ε2

γa

κa

J1 (κa)

J0 (κa)
+ j
H(1)

1 (jγa)

H(1)
0 (jγa)

= 0 , (TM) (4.107b)

4.4.2 Fields of TE modes

The profile of TE modes can be appreciated from Figure 4.20.

%̂H%

ϕ̂Eϕ

ẑHz�
Figure 4.20: The field components of TE modes in circular cylindrical dielectric waveguides.

The unit vector, ẑ is oriented into the page.

H(0)
z = B0J0 (κ%) (4.108a)

H(0)
% =

jβ

κ
B0J1 (κ%) (4.108b)

E(0)
ϕ = − jωµ1

κ
B0J1 (κ%) (4.108c)

4.4.3 Fields of TM modes

The profile of TM modes can be appreciated from Figure 4.21.
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%̂E%

ϕ̂Hϕ

ẑEz

Figure 4.21: The field components of TM modes mód̊u in circular cylindrical dielectric waveg-

uides. The unit vector, ẑ is oriented into the page.

E(0)
z = A0J0 (κ%) (4.109a)

E(0)
% =

jβ

κ
B0J1 (κ%) (4.109b)

H(0)
ϕ =

jωε1

κ
A0J1 (κ%) (4.109c)

4.4.4 Cut-off frequencies for TE and TM modes

The cut–off conditions follow from the condition γ → 0 . We make the use of Eqs. (4.61)

and (4.62). For small γa , the cylindrical functions can be approximated,

H(1)
0 (jγa) = J0 (jγa) + jN0 (jγa) ≈ 1 + j

2

π
ln

(
Υγa

2

)
≈ j

2

π
ln

(
Υγa

2

)
, (4.110a)

thanks to

∣∣∣∣ln(Υγa

2

)∣∣∣∣ � 1 . Here Υ ≈ 1, 78107 = eυ = e0,5772156619 . The symbol υ

denotes so called Euler–Mascheroni constant (p. 93). defined by the series,

υ = lim
m→∞

(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

m
− lnm

)
For small γa we further have

H(1)
1 (jγa) ≈ j

1

2
γa− 2

πγa
≈ − 2

πγa
, γa� 1 (4.110b)
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The substitution to the eigenvalue equation (4.107b) for TM eigenmodes provides step by

step,

ε1

ε2

1

κa

J1 (κa)

J0 (κa)
+ j

1

γa

H(1)
1 (jγa)

H(1)
0 (jγa)

= 0

ε2

ε1

κa
J0 (κa)

J1 (κa)
− jγa

H(1)
0 (jγa)

H(1)
1 (jγa)

= 0

ε2

ε1

κa
J0 (κa)

J1 (κa)
− jγa

j
2

π
ln

(
Υγa

2

)
− 2

πγa

= 0

ε2

ε1

κa
J0 (κa)

J1 (κa)
− γ2a2 ln

(
Υγa

2

)
= 0 (4.111)

The condition may be rearranged,

ε2

ε1

κa
J0 (κa)

J1 (κa)
= (γa)2 ln

(
Υγa

2

)
(4.112)

The limits γa→ 0 can be found by making use of the l’Hospital rule applied to a indefinite

expression of the type 0× (−∞) on the right hand side

lim
γa→0

jγa

[
H(1)

0 (jγa)

H(1)
1 (jγa)

]

= lim
γa→0

ln

(
Υγa

2

)
1

(γa)2

=

1

(γa)
−2

(γa)3

= −(γa)2

2
= 0 (4.113)

At γa→ 0 , the right hand side of Eq. (4.112) goes to zero and the solution is given by9

ε2

ε1

κa
J0 (κa)

J1 (κa)
= 0 (4.114)

The cut–off frequencies/thicknesses are specified by the nodal points of the Bessel function

of zero order, J0 (κa)

J0 (κa) = 0 (4.115)

The same condition, J0 (κa) = 0 determines the cut–off condition for TE modes. The

first zero point of J0 (κ) determines the lowest frequency/thickness for both TE and

TM modes, is located at (κa)c ≈ 2, 405 . The TE and TM modes have common cut–off

frequencies/thicknesses but above them their parameters, β , κ , and γ are different.

9The zero of the κa argument, κa = 0 , of the Bessel function does not represent the solution as at

κa→ 0 , J0 (κa)→ 1 and J1 (κa)→ κa/2 . Consequently, κa = 0 is not a solution to Eq. (4.114).
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Figure 4.22: Plot of the functions κa

J0 (κa)

J1 (κa)
and jγa

H(1)
0 (jγa)

H(1)
1 (jγa)

entering the eigenvalue equa-

tions for TE and TM modes.

4.5 Hybrid modes

In Section 4.4 we were concerned with the cut–off conditions for TE and TM modes. In this

section, we investigate cut–off frequencies/thicknesses of EH and HE modes, characterized

by ν 6= 0 . The fields of these so called hybrid modes have non zero both z field com-

ponents, Ez 6= 0 a Hz 6= 0 (see the introduction to Section 4.4). Because of Eqs. (4.34),

they are formed by all six field components.
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J −1 =
1

κa

J0 (κa)

J1 (κa)

O 5 10
κa

10

5

−5

−10

\
Figure 4.23: Plot of the function, J −1 (κa) .

4.5.1 Transformation of the characteristic equation

To find the cut–off frequecies/thicknesses (core radii), we transform the eigenvalue equa-

tion (4.92). We take into account the properties of cylindrical functions. These are of

defined parity,

Z−ν (z) = (−1)ν Zν (z) (4.116a)

We further employ the recursion relations for cylindrical functions,

Z ′ν (z) =
dZν (z)

dz
=

1

2
[Zν−1 (z)−Zν+1 (z)] (4.116b)

Zν (z) =
z

2ν
[Zν−1 (z) + Zν+1 (z)] (4.116c)

Please note that the recursion relations must be modified for the Bessel functions of third

kind, employed as the solutions to the diffuse equation, Iν(z) and Kν(z) . In particular,
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J −2 =
1

κa

J1 (κa)

J2 (κa)

O 5 10
κa

10

5

−5

−10

]
Figure 4.24: Plot of the function, J −2 (κa) .

for the solutions to the modified Bessel equation in terms of Kν(γ%) defined by Eq. (4.73),

Kν(γ%) =
π

2
jν+1H(1)

ν (jγ%)

dKν (γ%)

d(γ%)
=

π

2
jν+2 dH(1)

ν (jγ%)

d(jγ%)
= −π

2
jν

dH(1)
ν (jγ%)

d(jγ%)

we have,

K′ν (γ%) =
dKν (γ%)

d(γ%)
= −1

2
[Kν−1 (γ%) +Kν+1 (γ%)] (4.117a)

−2ν

γ%
Kν (γ%) = Kν−1 (γ%)−Kν+1 (γ%) (4.117b)

which differs from the results given in Eqs. (4.116b) and (4.116c) valid for Bessel and

Hankel functions.
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Figure 4.25: Plot of the function, J −3 (κa) .

The sum of Eqs. (4.116b) and (4.116c)

Zν−1 (z)−Zν+1 (z) = 2Z ′ν (z)

Zν−1 (z) + Zν+1 (z) =
2ν

z
Zν (z)

divided by two,

Zν−1 (z) = Z ′ν (z) +
ν

z
Zν (z)

The difference of Eqs. (4.116b) and (4.116c) divided by two gives,

Zν+1 (z) = −Z ′ν (z) +
ν

z
Zν (z)



4.5. HYBRID MODES 127
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Figure 4.26: Plot of the function, J +

1 (κa) .

The division of both equations by Zν (z) results in,

Zν−1 (z)

Zν (z)
=
Z ′ν (z)

Zν (z)
+
ν

z
(4.118a)

Zν+1 (z)

Zν (z)
= −Z

′
ν (z)

Zν (z)
+
ν

z
(4.118b)

We further divide the difference by the variable z and obtain,

1

z

Z ′ν (z)

Zν (z)
=

1

2

[
1

z

Zν−1 (z)

Zν (z)
− 1

z

Zν+1 (z)

Zν (z)

]
We introduce the notation,

1

z

Z ′ν (z)

Zν (z)
=

1

2

[
Z−ν (z)−Z+

ν (z)
]

(4.119)
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Figure 4.27: Plot of the function, J +
2 (κa) .

with

Z±ν (z) =
1

z

Zν±1 (z)

Zν (z)
(4.120)

In the special cases,

J ±ν (κa) =
1

κa

Jν±1 (κa)

Jν (κa)
(4.121a)

H±ν (jγa) =
1

jγa

H(1)
ν±1 (jγa)

H(1)
ν (jγa)

(4.121b)
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Figure 4.28: Plot of the function, J +

3 (κa) .

The substitution according to Eq. (4.119)

1

κa

J ′ν (κa)

Jν (κa)
=

1

2

[
J −ν (κa)− J +

ν (κa)
]

(4.122)

1

jγa

H(1)′
ν (jγa)

H(1)
ν (jγa)

=
1

2

[
H−ν (jγa)−H+

ν (jγa)
]

(4.123)

into the eigenvalue equation (4.92),[
νωa βa

κ2a2 γ2a2
(ε1µ1 − ε2µ2)

]2

=

[
µ1

1

κa

J ′ν (κa)

Jν (κa)
− µ2

1

jγa

H(1)′
ν (jγa)

H(1)
ν (jγa)

][
ε1

1

κa

J ′ν (κa)

Jν (κa)
− ε2

1

jγa

H(1)′
ν (jγa)

H(1)
ν (jγa)

]
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K−1
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K−3

O 5 10
γa
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Figure 4.29: Plot of the functions, K−ν =

1

γa

Kν−1 (γa)

Kν (γa)
=

1

jγa

Hν−1 (jγa)

Hν (jγa)
= H−ν , ν = 1, 2, 3 .

provides, by making use of Eq. (4.122) and after the division by the product ε2µ2[
2νωa βa (ε2µ2)1/2

κ2a2γ2a2

(
ε1µ1

ε2µ2

− 1

)]2

=

[
µ1

µ2

(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)]
×

[
ε1

ε2

(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)]
(4.124)

We denote,

ε1

ε2

≡ ε ,
µ1

µ2

≡ µ , (ε1µ1)1/2 ω ≡ k1 , (ε2µ2)1/2 ω ≡ k2 (4.125)

and transform Eq. (4.124),[
2ν (εµ− 1)

k2a βa

κ2a2 γ2a2

]2

=
[
µ
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)] [
ε
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)]
(4.126)

We now have to perform a rather cumbersome rearranging on the right hand side of

this equation. This will allow us, by making use of the recursion relation, to eliminate
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Figure 4.30: Plot of the functions, K+
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Kν (γa)
= − 1

jγa
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Hν (jγa)
= −H+

ν , ν =

1, 2, 3 .

cylindrical functions from the sums J −ν +J +
ν and H−ν +H+

ν . This will be the first step in

a procedure leading to a considerable simplification of the eigenvalue equation. We have[
µ
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)] [
ε
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)]
=

[(
µJ −ν −H−ν

)
−
(
µJ +

ν −H+
ν

)] [(
εJ −ν −H−ν

)
−
(
εJ +

ν −H+
ν

)]
=

(
µJ −ν −H−ν

) (
εJ −ν −H−ν

)
+
(
µJ +

ν −H+
ν

) (
εJ +

ν −H+
ν

)
−

(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
−
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)
(4.127)

We subtract and add the expression in the last row in Eq. (4.127), i.e.,(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
+
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)
to get [

µ
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)] [
ε
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)]
=

(
µJ −ν −H−ν

) (
εJ −ν −H−ν

)
+
(
µJ +

ν −H+
ν

) (
εJ +

ν −H+
ν

)
+

(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
+
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)
− 2

(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
−2
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)
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We rearrange the first four terms (underlined) on the right hand side of this equation,[
µ
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)] [
ε
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)]
=

(
µJ −ν −H−ν

) (
εJ −ν −H−ν

)
+
(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
+

(
µJ +

ν −H+
ν

) (
εJ +

ν −H+
ν

)
+
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)
− 2

(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
−2
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)
We leave unchanged the left hand side and last two terms on the right hand side of this

equation, [
µ
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)] [
ε
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)]
=

(
µJ −ν −H−ν

) [(
εJ −ν −H−ν

)
+
(
εJ +

ν −H+
ν

)]
+

(
µJ +

ν −H+
ν

) [(
εJ −ν −H−ν

)
+
(
εJ +

ν −H+
ν

)]
− 2

(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
−2
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)
=

[(
µJ −ν −H−ν

)
+
(
µJ +

ν −H+
ν

)] [(
εJ −ν −H−ν

)
+
(
εJ +

ν −H+
ν

)]
− 2

(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
−2
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)
and get on the right hand side,[

µ
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)] [
ε
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)]
=

[
µ
(
J −ν + J +

ν

)
−
(
H−ν +H+

ν

)] [
ε
(
J −ν + J +

ν

)
−
(
H−ν +H+

ν

)]
− 2

[(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
+
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)]
(4.128)

The sums J −ν + J +
ν and H−ν +H+

ν were underlined. We take into account the recursion

relation, Eq. (4.116c),

Zν−1 (z) + Zν+1 (z)

Zν (z)
=

2ν

z
(4.129)

and compute, with the help of Eq. (4.120),

1

z

Zν−1 (z)

Zν (z)
+

1

z

Zν+1 (z)

Zν (z)
= Z−ν (z) + Z+

ν (z) =
2ν

z2
(4.130)

We apply this general result to the special cases, J −ν + J +
ν and H−ν +H+

ν

J −ν (κa) + J +
ν (κa) =

2ν

κ2a2
(4.131a)

H−ν (jγa) +H+
ν (jγa) = − 2ν

γ2a2
(4.131b)
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From the first term on the right hand side (underlined) of Eq. (4.128) we eliminate the

cylindrical functions, [
µ
(
J −ν + J +

ν

)
−
(
H−ν +H+

ν

)] [
ε
(
J −ν + J +

ν

)
−
(
H−ν +H+

ν

)]
=

(
µ

2ν

κ2a2
+

2ν

γ2a2

)(
ε

2ν

κ2a2
+

2ν

γ2a2

)
=

(
2ν

a2

)2(
µ

κ2
+

1

γ2

)(
ε

κ2
+

1

γ2

)
=

(
2ν

a2κ2γ2

)2 (
µγ2 + κ2

) (
εγ2 + κ2

)
(4.132)

The expression (µγ2 + κ2) (εγ2 + κ2) rearranged becomes,(
µγ2 + κ2

) (
εγ2 + κ2

)
= εµγ4 + (ε+ µ) γ2κ2 + κ4

(4.133)

We apply the relations from Eqs. (4.74) and (4.79)

γ2 = β2 −
(
ω2ε2µ2

)
= β2 − k2

2 (4.134a)

κ2 =
(
ω2ε1µ1

)
− β2 = k2

1 − β2 = εµ
(
ω2ε2µ2

)
− β2

= εµk2
2 − β2 (4.134b)

where, because of Eq. (4.125), the propagation constant in the core equals k2
1 = εµk2

2 .

We eliminate γ2 and κ2 from Eq. (4.133)(
µγ2 + κ2

) (
εγ2 + κ2

)
= εµ

(
β2 − k2

2

)2
+ (ε+ µ)

(
β2 − k2

2

) (
εµk2

2 − β2
)

+
(
εµk2

2 − β2
)2

= εµβ4 − 2εµβ2k2
2 + εµk4

2 + (ε+ µ)
(
εµk2

2β
2 − εµk4

2 − β4 + k2
2β

2
)

+ε2µ2k4
2 − 2εµk2

2β
2 + β4 (4.135)

We rewrite this expression as a sum of terms proportional to β4 , k4
2 and k2

2β
2 ,(

µγ2 + κ2
) (
εγ2 + κ2

)
= [(εµ+ 1)− (ε+ µ)] β4 + εµ [εµ− (ε+ µ) + 1] k4

2

+ [−4εµ+ (ε+ µ) (εµ+ 1)] k2
2β

2

= (ε− 1) (µ− 1) β4 + (ε− 1) (µ− 1) εµk4
2 + k2

2β
2 [−4εµ+ (ε+ µ) (εµ+ 1)]

= (ε− 1) (µ− 1)
(
β4 + εµk4

2

)
+ k2

2β
2 [−4εµ+ (ε+ µ) (εµ+ 1)]

(4.136)
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The term proportional to k2
2β

2 can be rearranged to,

−4εµ+ (ε+ µ) (εµ+ 1)

= −4εµ+ (ε+ µ) (εµ+ 1) + (εµ+ 1) (ε− 1) (µ− 1)− (εµ+ 1) (ε− 1) (µ− 1)

= −4εµ+ (εµ+ 1) [(ε+ µ) + (ε− 1) (µ− 1)]− (εµ+ 1) (ε− 1) (µ− 1)

= −4εµ+ (εµ+ 1)2 − (εµ+ 1) (ε− 1) (µ− 1)

= (εµ− 1)2 − (εµ+ 1) (ε− 1) (µ− 1) (4.137)

Then we have(
µγ2 + κ2

) (
εγ2 + κ2

)
= (ε− 1) (µ− 1)

(
β4 + εµk4

2

)
+ k2

2β
2
[
(εµ− 1)2 − (εµ+ 1) (ε− 1) (µ− 1)

]
= (ε− 1) (µ− 1)

[
β4 − (εµ+ 1) k2

2β
2 + εµk4

2

]
+ k2

2β
2 (εµ− 1)2

= (ε− 1) (µ− 1)
(
β2 − k2

2

) (
β2 − εµk2

2

)
+ k2

2β
2 (εµ− 1)2

= − (ε− 1) (µ− 1) γ2κ2 + k2
2β

2 (εµ− 1)2 (4.138)

In the last step, we have employed Eqs. (4.134) for γ2 = β2 − k2
2 and −κ2 = β2 − εµk2

2 .

In this way, we have acquired all partial results required for the final transformation of

the eigenvalue equation (4.126),[
2ν (εµ− 1)

k2β

κ2γ2a2

]2

=
[
µ
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)] [
ε
(
J −ν − J +

ν

)
−
(
H−ν −H+

ν

)]
In the first step, we transform the right hand side of this equation according our results

and leave the left hand side unchanged. The use of Eq. (4.138) leads to the form,(
2ν

κ2γ2a2

)2

[(εµ− 1) k2β]2

=
[
µ
(
J −ν + J +

ν

)
−
(
H−ν +H+

ν

)] [
ε
(
J −ν + J +

ν

)
−
(
H−ν +H+

ν

)]
− 2

[(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
+
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)]
In the second step, we eliminate the cylindrical functions by making use of Eq. (4.132)(

2ν

a2κ2γ2

)2

[(εµ− 1) k2β]2

=

(
2ν

a2κ2γ2

)2 (
µγ2 + κ2

) (
εγ2 + κ2

)
− 2

[(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
+
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)]
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The use of Eq. (4.138) gives,(
2ν

a2κ2γ2

)2

[(εµ− 1) k2β]2

=

(
2ν

a2κ2γ2

)2 {
− (ε− 1) (µ− 1) γ2κ2 + [(εµ− 1) k2β]2

}
− 2

[(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
+
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)]
The distribution of the curly brackets, {} , in the first term on the right hand side,(

2ν

a2κ2γ2

)2

[(εµ− 1) k2β]2

= −
(

2ν

a2κ2γ2

)2

(ε− 1) (µ− 1) γ2κ2+

(
2ν

a2κ2γ2

)2

[(εµ− 1) k2β]2

− 2
[(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
+
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)]
(4.139)

The single term on the left hand side is canceled with the underlined term on the right

hand side of this equation. We finally arrive at an alternative form of the eigenvalue

equation in cylindrical dielectric fiber waveguides with a step index profile,

(µJ −ν −H−ν ) (εJ +
ν −H+

ν )+(µJ +
ν −H+

ν ) (εJ −ν −H−ν )=−2

(
ν

a2κγ

)2

(ε−1) (µ−1)

(4.140)

where the meaning of J ±ν and H±ν is given by Eqs. (4.120),

J ±ν (κa) =
1

κa

Jν±1(κa)

Jν(κa)

H±ν (jγa) =
1

jγa

H(1)
ν±1(jγa)

H(1)
ν (jγa)

We have left the concise notation, ε = ε1/ε2 and µ = µ1/µ2 . Equation (4.140) will be

employed in the search for cut–off product of frequencies and core radii.

The eigenvalue equation can also be written in the form,

2
(
µεJ −ν J +

ν +H−ν H+
ν

)
− (µ+ ε)

(
J −ν H+

ν + J +
ν H−ν

)
=−2

(
ν

a2κγ

)2

(ε− 1) (µ− 1)

(4.141)

The eigenvalue equation can be simplified for ε − 1 = 0 or µ− 1 = 0 . In fibers of

nonmagnetic core and cladding (or in fiber with both core and cladding of the same

magnetic permeability), corresponding to µ − 1 = 0 , we get a simplified form of the

eigenvalue equation,(
J −ν −H−ν

) (
εJ +

ν −H+
ν

)
+
(
J +
ν −H+

ν

) (
εJ −ν −H−ν

)
= 0 (4.142)
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4.5.2 Approximation for Hankel functions of small arguments

The cut–off frequencies/thicknesses correspond to the situations where γa → 0 . To find

the cut–off frequencies/thicknesses we need the approximations for Hankel functions of

the first kind at small arguments, γa , i.e., for γa� 1 . Please note that for ν = 0 a ν = 1

the approximations have been already employed in Eqs. (4.110). The approximations can

be deduced from Eqs. (4.61) , (4.62) and (4.63),

H(1)
0 (jγa) ≈ j

2

π
ln

(
Υγa

2

)
, Υ ≈ 1, 78107 = eυ = e0,5772156619 (4.143a)

H(1)
ν (jγa) ≈ −j

(ν − 1)!

π

(
2

jγa

)ν
, ν ≥ 1 (4.143b)

We remind the relevant properties of cylindrical functions from Eqs. (4.116),

Z−ν (z) = (−1)ν Zν (z)

Z ′ν (z) =
dZν (z)

dz
=

1

2
[Zν−1 (z)−Zν+1 (z)]

Zν−1 (z) + Zν+1 (z) =
2ν

z
Zν (z)

The approximations to H−ν (Figure 4.29),

H−ν ≡ 1

jγa

H(1)
ν−1 (jγa)

H(1)
ν (jγa)

(4.145)

must be deduced from Eqs. (4.143) separately for ν = 1 and for ν > 1 .

H−1 ≡ 1

jγa

H(1)
0 (jγa)

H(1)
1 (jγa)

H−1 ≈ 1

jγa

j
2

π
ln

(
Υγa

2

)
−j

0!

π

(
2

jγa

)
i.e.,

H−1 ≈ − ln

(
Υγa

2

)
, γa� 1 (4.146)

For ν > 1 , we get,

H−ν ≈ 1

jγa

−j
(ν − 2)!

π

(
2

jγa

)ν−1

−j
(ν − 1)!

π

(
2

jγa

)ν
≈ 1

jγa

1

(ν − 1)

jγa

2
(4.147)
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i.e.,

H−ν ≈ 1

2 (ν − 1)
, ν > 1 , γa� 1 (4.148)

H+
ν ≡

1

jγa

H(1)
ν+1 (jγa)

H(1)
ν (jγa)

≈ 1

jγa

−j
ν!

π

(
2

jγa

)ν+1

−j
(ν − 1)!

π

(
2

jγa

)ν
≈ 1

jγa

2ν

jγa
(4.149)

i.e.,

H+
ν ≈ − 2ν

(γa)2 , ν ≥ 1 , γa� 1 (4.150)

4.5.3 Mode ν = 1 of zero cut-off frequency

We look for the fundamental mode of zero cut –off frequency/thickness, if exists. To

the cut–off condition, γa → 0 we associate the condition κa → 0 . We employ the

approximations to Bessel functions at κa→ 0 . These can be found from Eq. (4.61)

Jν (κa) ≈ 1

ν !

(κa
2

)ν
, κa� 1 , ν ≥ 0 (4.151)

In particular,

J0 (κa) ≈ 1 , κa� 1 (4.152)

We establish

J +
ν ≡ 1

κa

Jν+1 (κa)

Jν (κa)
(4.153)

and

J −ν ≡ 1

κa

Jν−1 (κa)

Jν (κa)
(4.154)

at κa→ 0 . We obtain

J +
ν ≈ 1

κa

1

(ν + 1)!

(κa
2

)ν+1

1

ν !

(κa
2

)ν
≈ 1

κa

ν !

(ν + 1)!

κa

2
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i.e.,

J +
ν ≈ 1

2 (ν + 1)
, κa� 1 (4.155)

J −ν ≈ 1

κa

1

(ν − 1)!

(κa
2

)ν−1

1

ν !

(κa
2

)ν

J −ν ≈ 2ν

(κa)2 , κa� 1 (4.156)

In the special case, ν = 1

J +
1 =

1

κa

J2 (κa)

J1 (κa)
≈ 1

4
, κa� 1 (4.157a)

J −1 =
1

κa

J0 (κa)

J1 (κa)
≈ 2

(κa)2 , κa� 1 (4.157b)

H+
1 ≈ − 2

(γa)2 , γa� 1 (4.157c)

H−1 ≈ − ln

(
Υγa

2

)
, Υ ≈ 1, 78107 , γa� 1 (4.157d)

Here, we have included the previous results for H+
1 and H−1 at γa → 0 given in

Eqs. (4.146) and (4.150).

We can now apply the approximations to the eigenvalue equation (4.140) restricted to

the order ν = 1 ,

(
µJ −1 −H−1

) (
εJ +

1 −H+
1

)
+
(
µJ +

1 −H+
1

) (
εJ −1 −H−1

)
=−2

(
1

a2κγ

)2

(ε− 1) (µ− 1)

(4.158)

We get, [
2µ

(κa)2 + ln

(
Υγa

2

)][
ε

4
+

2

(γa)2

]
+

[
µ

4
+

2

(γa)2

] [
2ε

(κa)2 + ln

(
Υγa

2

)]
≈ −2

(
1

a2κγ

)2

(ε− 1) (µ− 1)

(4.159)
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Obviously for γa→ 0 , we have
2

(γa)2 �
ε

4
and

2

(γa)2 �
µ

4
. This allows us to write,[

2µ

(κa)2 + ln

(
Υγa

2

)]
2

(γa)2 +
2

(γa)2

[
2ε

(κa)2 + ln

(
Υγa

2

)]
≈ −2

(
1

κa γa

)2

(ε− 1) (µ− 1)

We remove the common factor,
2

(γa)2 ,[
2µ

(κa)2 + ln

(
Υγa

2

)]
+

[
2ε

(κa)2 + ln

(
Υγa

2

)]
≈ − 1

(κa)2 (ε− 1) (µ− 1)

and after some manipulations,

2 (µ+ ε)

(κa)2 + 2 ln

(
Υγa

2

)
≈ − 1

(κa)2 (ε− 1) (µ− 1)

2 (µ+ ε) + (ε− 1) (µ− 1)

(κa)2 + 2 ln

(
Υγa

2

)
≈ 0

(µ+ 1) (ε+ 1)

(κa)2 ≈ −2 ln

(
Υγa

2

)
we arrive at

(µ+ 1) (ε+ 1)

(κa)2 ≈ ln

[(
2

Υγa

)2
]

(4.160)

At γa→ 0 and κa→ 0 , both the left hand side and the right hand side increase to +∞ .

This equation has the solution for both γa→ 0 and κa→ 0 .

We rewrite Eq. (4.160) in terms of effective guide index, N = cβ/ω . In the limits

γa→ 0 and κa→ 0 N goes to n2 , i.e., N → n2

(µ+ 1) (ε+ 1)

2
(ωa
c

)2

(n2
1 −N2)

+ ln

 ωac Υ
(
N2 − n2

2

)1/2

2

 ≈ 0 (4.161)

For the sake of simplicity, we confine ourselves to the situations where the magnetic

permeabilities in the core and in the cladding are equal to each other, which is often the

case. Then µ1 = µ2 , consequently µ = 1 . Equation (4.161) simplifies to the form where

ε =
n2

1

n2
2

,

2

(
1 +

n2
1

n2
2

)
(ωa
c

)2

(n2
1 −N2)

≈ ln

 4(ωa
c

Υ
)2 (

N2 − n2
2

)
 (4.162)
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We compare the expressions on the left hand side and on the right hand side of this

equation. For N → n2 the solutions to this approximate eigenvalue equation are the

values,
ωa

c
→ 0 . Indeed, the graphical solutions to Eq. (4.162) in Figure 4.31 are given

by the intersections of the function of N

fκ(N,ωa) =

2

(
1 +

n2
1

n2
2

)
(ωa
c

)2

(n2
1 −N2)

(4.163a)

which, at a fixed value of ωa varies slowly when N → n2 , and the function of N

fγ(N,ωa) = ln

 4(ωa
c

Υ
)2 (

N2 − n2
2

)
 (4.163b)

which asymptotically approaches the vertical axis as N → n2 . Both the functions increase

to infinity as ωa → 0 . Figure 4.31 displays the intersection points of these functions

associated to a particular value N and
ωa

c
representing the solutions in the region of

small arguments, γa and κa . The solution to the approximate eigenvalue equation,

Eq. (4.162) at a given value of ωa/c can be expressed in terms N , or in terms γ , or κ

for a given radius of the core, a . These parameters are coupled by equations

κ =
(
ω2ε1µ1 − β2

)1/2
=

ω

c

(
n2

1 −N2
)1/2

γ =
(
β2 − ω2ε2µ2

)1/2
=

ω

c

(
N2 − n2

2

)1/2

results of numerical evaluation of Eq. (4.161) at µ = 1 are shown in Figure 4.32.

4.5.4 Cut-off frequencies of higher ν = 1 modes

We consider the cases γa→ 0 but κa 6= 0 . We substitute into the eigenvalue equation

(
µJ −1 −H−1

) (
εJ +

1 −H+
1

)
+
(
µJ +

1 −H+
1

) (
εJ −1 −H−1

)
=−2

(
1

a2κγ

)2

(ε− 1) (µ− 1)

(4.164)

the approximations to the Hankel functions, H+
1 and H−1 according to Eqs. (4.157c) and

(4.157d), [
µ

1

κa

J0 (κa)

J1 (κa)
+ ln

(
Υγa

2

)][
ε

1

κa

J2 (κa)

J1 (κa)
+

2

(γa)2

]
+

[
ε

1

κa

J0 (κa)

J1 (κa)
+ ln

(
Υγa

2

)][
µ

1

κa

J2 (κa)

J1 (κa)
+

2

(γa)2

]
=

−2

(κa)2 (γa)2 (ε− 1) (µ− 1) (4.165)
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0

1, 400 1, 402 1, 404 1, 406 1, 408 N

5

ωa

c
= 0, 20

0, 25

0, 30

0, 35

0, 40

2 (1 + n2
1/n

2
2) c2

(n2
1 −N2)ω2a2

ln

[
4c2

(N2 − n2
2) Υ2ω2a2

]!
Figure 4.31: Graphical solution to the eigenvalue equation in a cylindrical dielectric fiber

waveguide for small values of the vacuum propagation constant, ω/c and/or for small values of

the core radius, a , i.e., for the values ωa/c = 0, 20 0, 25 0, 30 0, 35 and 0, 40 . The magnetic

permeabilities in the core and in the cladding are equal. The real index of refraction in the core

assumes the value, n1 = 1, 5 . The real index of refraction in the cladding assumes the value,

n2 = 1, 4 . The effective guide index is confined to the range, n2 < N < n1 . The figure shows

the region where N → n2 . The full circles indicate intersections of the functions with the same

values of the parameter, ωa/c .

This equation can be rearranged by the multiplication of both sides with (κa)2 J0 (κa)[
µJ0 + κaJ1 ln

(
Υγa

2

)][
εJ2 + κaJ1

2

(γa)2

]
+

[
εJ0 + κaJ1 ln

(
Υγa

2

)][
µJ2 + κaJ1

2

(γa)2

]
=
−2J 2

1

(γa)2 (ε− 1) (µ− 1) (4.166)
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0

0, 0 0, 1 0, 2 0, 3 0, 4 0, 5 ωa/c

1

N

κa

γa 
Figure 4.32: Approximate solutions to the eigenvalue equation in a cylindrical dielectric fiber

waveguide in terms of the effective guide index, N , in terms of product of the transverse prop-

agation constant, κ , and the core radius, a , i.e., κa , and in terms of product of the damping

constant, γ and the core radius, a , i.e., γa , expressed as functions of the product of the vacuum

propagation constant, ω/c and the core radius, a , i.e., ωa/c . The magnetic permeabilities in

the core and in the cladding are equal. The real index of refraction in the core assumes the

value, n1 = 1, 5 . The real index of refraction in the cladding assumes the value, n2 = 1, 4 . The

effective guide index is confined to the range, n2 < N < n1 . In the region,
ωa

c
→ 0 the effective

guide index N tends to n2 , N → n2 .

At (γa)2 → 0

εJ2 � (κa)J1
2

(γa)2 (4.167a)

µJ2 � κaJ1
2

(γa)2 (4.167b)
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(excluding, perhaps, the nodal points of J1)[
µJ0 + κaJ1 ln

(
Υγa

2

)]
κaJ1

2

(γa)2

+

[
εJ0 + κaJ1 ln

(
Υγa

2

)]
κaJ1

2

(γa)2

=
−2J 2

1

(γa)2 (ε− 1) (µ− 1)

(4.168)

Equation (4.168) can rearranged after the division by
2

(γa)2 . We get,

[
(µ+ ε)κaJ0 + 2 (κa)2 J1 ln

(
Υγa

2

)
+ (ε− 1) (µ− 1)J1

]
J1 = 0

(4.169)

One set of solutions is given by nodal points of the Bessel function J1 (κa) , excluding

κa = 0 , i.e.,

J1 (κa) = 0 , κa 6= 0 (4.170)

and determines the cut–off frequencies/thicknesses of so called EH modes numbered as

EH11, EH12, EH13, EH14, . . . EH1µ .

The nomenclature of guided modes in cylindrical dielectric waveguides with a step in-

dex profile employs the notation EHνµ and HEνµ . The first subscript gives the azimuthal

number, ν , or the order of a corresponding cylindrical function (associated with the z

field components) and the second one gives the radial number, µ, or the numerical order

of nodal points associated with the Bessel function, Jν (κa) .10

Another set of solutions follows from

(µ+ ε)κaJ0 + 2 (κa)2 J1 ln

(
Υγa

2

)
+ (ε− 1) (µ− 1)J1 = 0

(4.171)

which can also be expressed as,

J1 = J1 (κa) =
(µ+ ε)κa

2 (κa)2 ln

(
2

Υγa

)
− (ε− 1) (µ− 1)

J0 (κa)

(4.172)

10The conventional notation of the radial number is employed as a subscript and cannot be confused

with the permeability ratio, µ = µ1/µ2 .
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The limits on the right hand side

lim
γa→0

(µ+ ε)κaJ0 (κa)

2 (κa)2 ln

(
2

Υγa

)
− (ε− 1) (µ− 1)

= 0 (4.173)

is zero. Consequently, the cut–off frequencies/thicknesses are determined by the same

condition,

J1 (κa) = 0 , κa 6= 0 (4.174)

as in the case of EH1µ modes. These modes are denoted as HE1µ . Above the cut–off,

they are not degenerate with EH1µ modes. The numerical order starts at HE12 , as HE11

is reserved for the fundamental mode of zero cut–off, κa→ 0 .

4.5.5 Cut-off frequencies of ν ≥ 2 modes

In the eigenvalue equation,

(
µJ −ν −H−ν

) (
εJ +

ν −H+
ν

)
+
(
µJ +

ν −H+
ν

) (
εJ −ν −H−ν

)
=−2

(
ν

a2κγ

)2

(ε− 1) (µ− 1)

(4.175)

we replace J ±ν according to

J ±ν ≡ 1

κa

Jν±1 (κa)

Jν (κa)
(4.176)

and employ the approximations for H−ν and H+
ν from Eqs. (4.148) and (4.150),

H+
ν ≈ − 2ν

(γa)2 , ν ≥ 1 (4.177)

H−ν ≈ 1

2 (ν − 1)
, ν > 1 (4.178)

We get, [
µ

κa

Jν−1

Jν
− 1

2 (ν − 1)

] [
ε

κa

Jν+1

Jν
+

2ν

(γa)2

]
+

[
ε

κa

Jν−1

Jν
− 1

2 (ν − 1)

] [
µ

κa

Jν+1

Jν
+

2ν

(γa)2

]
= −2

(
ν

a2κγ

)2

(ε− 1) (µ− 1) (4.179)
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After the multiplication of both sides by (κa)2 J 2
ν , the equation transforms to[

µJν−1 −
κaJν

2 (ν − 1)

] [
εJν+1 + κaJν

2ν

(γa)2

]
+

[
εJν−1 −

κaJν
2 (ν − 1)

] [
µJν+1 + κaJν

2ν

(γa)2

]
=
−2ν2

(γa)2 (ε− 1) (µ− 1)J 2
ν (4.180)

The terms
2ν

(γa)2κaJν dominate at γa → 0 . Then the terms εJν+1 and µJν+1 become

negligible with respect to them, and we can write,[
µJν−1 −

κaJν
2 (ν − 1)

]
κaJν

2ν

(γa)2 +

[
εJν−1 −

κaJν
2 (ν − 1)

]
κaJν

2ν

(γa)2

+
2ν2

(γa)2 (ε− 1) (µ− 1)J 2
ν = 0 (4.181)

This can be rearranged to

2ν

(γa)2κaJν
[
(µ+ ε)Jν−1 −

κaJν
(ν − 1)

]
+

2ν2

(γa)2 (ε− 1) (µ− 1)J 2
ν = 0

(4.182)

The division by
2ν

(γa)2 provides,

κaJν︸ ︷︷ ︸
EH

[
(µ+ ε)Jν−1 −

κaJν
(ν − 1)

+
ν

κa
(ε− 1) (µ− 1)Jν

]
︸ ︷︷ ︸

HE

= 0

(4.183)

There exist the solutions of two types for the cut–off. One is determined by the condition,

Jν (κa) = 0 , κa 6= 0 , ν = 2, 3, 4, . . . (4.184)

and defines the cut–off for EHν1 , EHν2 , EHν3, EHν4, . . . EHνµ , ν ≥ 2 . Another one

follows from the equation (4.183) after the removal of κaJν 6= 0

(µ+ ε)Jν−1 −
[

κa

(ν − 1)
− ν (ε− 1) (µ− 1)

κa

]
Jν = 0 , ν ≥ 2 (4.185)

and defines the cut–off for HEνµ modes.

It can be shown that κa → 0 is not a solution for the cut–off for the modes of

the order ν > 1 . In the opposite case, the monomode regime would not be possible.
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The substitution into Eq. (4.175) for the approximate H+
ν and H−ν from Eqs. (4.177) and

(4.177) for ν > 1 in the limits, γa→ 0 has given[
µJ −ν −

1

2 (ν − 1)

] [
εJ +

ν +
2ν

(γa)2

]
+

[
µJ +

ν +
2ν

(γa)2

] [
εJ −ν −

1

2 (ν − 1)

]
= −2

(
ν

a2κγ

)2

(ε− 1) (µ− 1) (4.186)

We introduce

J ±ν ≡ 1

κa

Jν±1 (κa)

Jν (κa)
(4.187)

and suppose κa � 1 . The use of the approximation from Eq. (4.151) and the definition

for J +
ν and J −ν given in Eqs. (4.119) or (4.121a) provides,

Jν ≈
1

ν !

(κa
2

)ν
, κa� 1 , ν ≥ 0 (4.188)

and,

J +
ν =

1

κa

Jν+1 (κa)

Jν (κa)
≈ 1

κa

1

(ν + 1)!

(κa
2

)ν+1

1

ν !

(κa
2

)ν
≈ 1

κa

ν !

(ν + 1)!

κa

2

i.e.,

J +
ν ≈ 1

2 (ν + 1)
(4.189)

and,

J −ν =
1

κa

Jν−1 (κa)

Jν (κa)
≈ 1

κa

1

(ν − 1)!

(κa
2

)ν−1

1

ν !

(κa
2

)ν
≈ 1

κa

ν !

(ν − 1)!

2

κa

i.e.,

J −ν ≈ 2ν

(κa)2 , ν ≥ 1 (4.190)

The substitutions for J ±ν into Eq. (4.186) gives,[
µ

2ν

(κa)2 −
1

2 (ν − 1)

] [
ε

1

2 (ν + 1)
+

2ν

(γa)2

]
+

[
µ

1

2 (ν + 1)
+

2ν

(γa)2

] [
ε

2ν

(κa)2 −
1

2 (ν − 1)

]
= −2

(
ν

a2κγ

)2

(ε− 1) (µ− 1) (4.191)
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With the restriction to the terms dominating at γa→ 0 and κa→ 0 , we have

µ
2ν

(κa)2

2ν

(γa)2 + ε
2ν

(γa)2

2ν

(κa)2 + 2

(
ν

a2κγ

)2

(ε− 1) (µ− 1) = 0

(4.192)

simplified step by step to

2ν2 [2 (ε+ µ) + (ε− 1) (µ− 1)]

(γa)2 (κa)2 = 0

2ν2 (ε+ 1) (µ+ 1)

(γa)2 (κa)2 = 0 , ν > 1 (4.193)

This equation has no solution for γa→ 0 and κa→ 0 . Consequently, κa→ 0 cannot be

a solution for cut–off of modes of the order ν > 1 .

4.6 Weak guiding approximation

In practical fibers, ε ≈ 1 and µ ≈ 1 . From the cut–off condition for HEνµ modes given

by Eq. (4.185)

(µ+ ε)Jν−1 −
[

κa

(ν − 1)
− ν (ε− 1) (µ− 1)

κa

]
Jν = 0 , ν ≥ 2

we get with the small term proportional to (ε− 1) (µ− 1) removed,

2Jν−1 −
κa

(ν − 1)
Jν ≈ 0 (4.194)

i.e.,

Jν ≈ 2
(ν − 1)

κa
Jν−1 (4.195)

In the recursion relation given in Eq. (4.116c)

Zν−1 (z) + Zν+1 (z) =
2ν

z
Zν (z) (4.196)

we shift the order, ν → ν − 1 and get

Zν−2 (z) + Zν (z) =
2 (ν − 1)

z
Zν−1 (z) (4.197)

In the special case of Bessel functions, Zν (z) is replaced by Jν (κa)

Jν−2 (κa) + Jν (κa) =
2 (ν − 1)

κa
Jν−1 (κa) (4.198)
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Table 4.4: The cut–off condition, (κa)c , for the modes of orders ν = 0, 1, . . . 3, in the fiber

characterized by ε1/ε2 = 1, 1 and µ1/µ2 = 1, 0 . After Dietrich Marcuse, Light Transmission

Optics, Bell Laboratories Series, Van Nostrand Reinhold Company, New York 1972, pp. 305 -

313.

ν\µ 1 2 3 4 5 Mode Cut–off

0 2,405 5,520 8,654 11.792 14.931 TE,TM J0 (κa) = 0

1 0 3,832 7,016 10.174 13.324 HE J1 (κa) = 0

1 3,832 7,016 10,174 13.324 16.471 EH J1 (κa) = 0

2 2,44 5,54 8,67 11.799 14.937 HE J0 (κa) ≈ 0

2 5,136 8,417 11,620 14.796 17.960 EH J2 (κa) = 0

3 3.882 7.044 10.193 13.339 16.483 HE J1 (κa) ≈ 0

3 6.380 9.761 13.015 16.224 19.409 EH J3 (κa) = 0

The use of this result in the simplified cut–off condition for HEνµ modes given by

Eq. (4.194) or by Eq. (4.195) results in

2 (ν − 1)

κa
Jν−1 (κa) = Jν−2 (κa) + Jν (κa) ≈ Jν (κa) (4.199)

The condition can only be satisfied at Jν−2 (κa) ≈ 0 . The cut–off condition for HEνµ

mód̊u in the approximation of weak guiding where (µ+ ε)→ 2 , is given by

Jν−2 (κa) ≈ 0 (4.200)

The approximate condition for HEνµ modes coincides with the exact cut–off condition

for EHν−2, µ modes. In special cases ν = 2 and ν = 3 this conclusion is illustrated in

Table 4.4.11

4.7 Nomenclature of guided modes summarized

4.7.1 Fundamental mode HE11

The fundamental HE11 modes display theoretically a zero cut–off frequency or thickness.

As aω/c increases, the fiber allows the propagation of TE01 and TM01 modes with the

11Dietrich Marcuse, Light Transmission Optics, Bell Laboratories Series, Van Nostrand Reinhold Com-

pany, New York 1972, p. 302.
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common cut–off frequency, (κa)c = 2, 405 , corresponding to the first nodal point of the

Bessel function of zero order given by J0 (κa) = 0. At the cut–off frequency, the argument

κa = (N2 − n2
2)

1/2 ω

c
a goes to (κa)c , where the effective guide index N (ωN/c = β) goes

to n2 , i.e., N → n2 . This means for the frequency f related to the angular frequency ω

by ω = 2πf ,

(κa)c =
(
n2

1 − n2
2

)1/2 ω

c
a = 2π

(
n2

1 − n2
2

)1/2 a

λvac

= 2π
(
n2

1 − n2
2

)1/2 f

c
a = 2.405 .

(4.201)

From this, we deduce the range where the fiber is monomode,

0 < f ≤ 2.405 c

2πa (n2
1 − n2

2)
1/2

. (4.202)

The ratio of the vacuum wavelength to the core radius required for the monomode regime

should not fall bellow the value given by,

λvac

a
≥ 2π

2.405

(
n2

1 − n2
2

)1/2
, (4.203)

or approximately below

λvac

a
≥ 2.611

(
n2

1 − n2
2

)1/2
. (4.204)

In terms of the vacuum wavelength, λvac , the range of monomode regime can be expressed

as

2πa

2.405

(
n2

1 − n2
2

)1/2 ≤ λvac <∞ . (4.205)

4.7.2 TE0µ (”EH0µ”) and TM0µ (”HE0µ”) modes (µ = 1 , 2 , 3 , . . . )

TE0µ modes (also EH0µ) and TM0µ modes (also HE0µ) have common cut–off frequen-

cies/thicknesses given by the nodes of the Bessel function of zero order, J0 (κa) , the

solutions to J0 (κa) = 0 .

4.7.3 EHνµ modes (ν = 1 , 2 , 3 , . . . , µ = 1 , 2 , 3 , . . . )

The cut–off frequencies/thicknesses of EHνµ modes are given by the nodal points of Bessel

functions, Jν (κa) . Nodal points are the solutions of Jν (κa) = 0 , κa 6= 0 .

4.7.4 HEνµ modes (ν = 1 , 2 , 3 , . . . , µ = 1 , 2 , 3 , . . . )

ν = 1

(a) HE11 , the cut–off frequency/thickness is zero,

(b) HE1µ (µ ≥ 2) , the cut–off frequencies/thicknesses are given by J1 (κa) = 0 , the nodal

points of the Bessel function of the first order, J1 (κa) , κa 6= 0 .



150 CHAPTER 4. OPTICAL FIBERS

ν > 1

the cut–off frequencies/thicknesses are given by the condition,

(µ+ ε)Jν−1 −
[
κa

ν − 1
− ν (ε− 1) (µ− 1)

κa

]
Jν = 0
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